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“Science and everyday life cannot and should not be separated”  

Rosalind Franklin 

 

“DNA is like a computer program but far, far more advanced than any software 

ever created” 

Bill Gates 
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Abstract 
 
Due to the rapid advances in sequencing technologies, large amounts of DNA sequences can 

be obtained quickly and cheaply, therefore, sequencing has become a routine procedure to 

perform analysis of microbial organisms. Shotgun metagenomic DNA sequencing is a relatively 

new scientific field in which genetic material is extracted directly from the environment, without 

prior cultivation or amplification. Therefore, metagenomics has become a robust environmental 

sequencing approach which provides insight into community biodiversity and function. However, 

the analysis of metagenomic sequences requires specific computational tools due to the biases 

and errors associated with the high-throughput sequencing technology as well as the complex 

structure of the data.  

 

This thesis focuses on the metagenomic analysis of samples collected from individuals with 

cystic fibrosis (CF). The dissertation presents the first unbiased and exhaustive metagenomic 

analysis of cystic fibrosis sputum samples to date. Relative and absolute abundances of DNA 

viruses, bacteria and fungi were calculated which demonstrate that a large repertoire of 

microbial organisms are present in the CF lower airways. On average, several hundred of 

bacterial taxa which made up more than 99% of the microbial community were identified in the 

analysis.  

A second observation is that each individual carries a specific microbial signature of multiple 

lowly abundant species superimposed by few disease-associated pathogens such as P. 

aeruginosa and S. aureus. Furthermore, the analysis of the three age-group individuals 

(children, adolescents and adults) indicates that the CF microbiome of our cohort is more 

diverse in children, which involves a healthier state of the individual. This diversity is lost as the 

age of the individual advances. i.e. the older a patient gets, they become dominated by one or 

two specific pathogens. However, there are a few cases of pancreatic sufficient (PS) CF adults 

which were found carrying a healthy microbial metagenome. Anaerobes were also identified in 

higher proportions in young individuals and their proportion decreases with age.  

 

Previous studies have addressed that the S. aureus and P. aeruginosa populations in CF 

individuals only consisted of between one and three major clones. However, a key finding of this 

thesis identifies several clones of S. aureus and P. aeruginosa present within the microbial 

community of an individual. In addition, the identification of the major clones of S. aureus and P. 

aeruginosa was performed using the MLST database and multi-marker array, respectively. Due 

to the low sequencing coverage present in some samples, just a few strains were identified. 

Four out of ten P. aeruginosa strains belonged to ubiquitous clones in the global P. aeruginosa 

population and two pairs out of thirteen S. aureus strains were assigned to the common clone 

type ST7 and the pandemic MRSA ST22. 
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As well, the identification and characterization of antibiotic resistance genes present in these 

two key species was performed. Mutations in the gyrase-encoding gyr loci were found in S. 

aureus.  

To achieve a high accuracy output, a new model was implemented in the metagenomic 

analysis. This model reduces the GC content biases present in SOLiD technology and 

normalizes the data based on the genome length.  

A second objective of this dissertation was the study of bacterial recombination, specifically in 

the dominant cystic fibrosis pathogens P. aeruginosa and S. aureus. It is already known that 

pathogenic and non-pathogenic bacteria can belong to the same taxa having similar DNA 

sequences. Therefore, the analysis of recombination is needed to understand the phylogenetic 

relationship between taxa. A new algorithm to study recombination based on the haplotype 

reconstruction was developed and applied to study the variation present in the previous 

mentioned dominant pathogens. The median haplotype length found was 51bp for S. aureus 

and 99bp for the unrelated P. aeruginosa clones. However, the intraclonal analysis of P. 

aeruginosa showed that haplotypes are 1000-fold longer within clone than among unrelated 

clones.  
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Chapter 1 

Thesis Outline and Research 

Objectives 

 

1.1 Research Objectives 

Motivation 

 

I would like to start my dissertation with a citation from Stephen Jay Gould: "We live now in the 

"Age of Bacteria." Our planet has always been in the "Age of Bacteria," ever since the first 

fossils—bacteria, of course—were entombed in rocks more than 3 billion years ago. On any 

possible, reasonable or fair criterion, bacteria are—and always have been—the dominant forms 

of life on Earth."  

 

Microorganisms are known to be the most diverse and abundant type of organisms on Earth1-2. 

They are essential for all types of life on Earth. Indeed they are involved in the cycles of carbon, 

nitrogen, oxygen and sulfur. Hosts depend on the associated microbial communities for 

obtaining necessary vitamins, nutrients and metals3-5. It has been shown that microbes 

associated with the gut of human beings enable the extraction of energy from food. This energy 

would not be accessible without them6-7. However, perturbations in the composition or functions 

of the microbiota can lead to metabolic and inflammatory disorders in their host8-9. Therefore, 

understanding of the complexity of a microbial community is more relevant than studying a 

single species of such community.  

 

Advances in DNA sequencing technologies and bioinformatics tools allow the exploration of 

uncultured host-associated microbial communities. Sequencing of the 16S rRNA gene is the 

most widely used approach for characterizing the microbiota and its diversity10-13. However, 

whole-genome shotgun (WGS) sequencing is an alternative culture-independent method to 

obtain a deeper and more robust analysis of the microbial communities14-16.  
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Here, we want to move one step further and employ these technological advances for the 

analysis of the lower airways microbiome of individuals with cystic fibrosis using whole genome 

sequencing.  

To my knowledge, only a few studies have been conducted on the cystic fibrosis metagenome 

where samples from at least ten CF adults have been analyzed17-19.  

 

Main aims and objectives 

The overall aim of this thesis was to resolve the metagenome of 25 individuals with CF, 

therefore temporal series of sputa samples were collected.  

Specifically: 

 To conduct an unbiased and comprehensive study about the frequency and abundance 

of bacteria, DNA viruses and fungi in the CF lower airways.  

 To investigate possible differences between exocrine pancreas insufficient (PI) and 

exocrine pancreas sufficient (PS) CF individuals and age groups (A - children, B - 

adolescents and C - adults).   

 To identify the major clones of the dominant CF pathogens Pseudomonas aeruginosa 

(P. aeruginosa) and Staphylococcus aureus (S. aureus). 

 To detect antibiotic resistance genes associated with P. aeruginosa and S. aureus. 

 To study the role of recombination in P. aeruginosa and S. aureus.  

 

 

Figure 1. The figure summarizes the main objectives and applications of my dissertation and indicates the respective 

chapters where they are addressed.  
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1.2 Overview of Chapters  

The following section provides an overview of the thesis with a short description of each 

individual chapter.  

Chapter 1 outlines my PhD project and its objectives. The project consists of two main parts, 

first, the cystic fibrosis lower airways microbial metagenome and secondly the connected study 

of bacterial recombination based on the haplotype reconstruction. The chapter also provides an 

overview of the dissertation and concludes with a list of publications carried out during the PhD.  

Chapter 2 provides an introduction to metagenomics and its advantages over other 

technologies followed by an overview of both next generation sequencing technologies and third 

generation sequencing. The chapter continues by explaining cystic fibrosis and P. aeruginosa. It 

concludes with an explanation of bacterial recombination.  

Chapter 3 presents a novel algorithm to study bacterial recombination based on the 

reconstruction of haplotypes and its application to S. aureus.  

Chapter 4 explores the P. aeruginosa pangenome where my main contribution was to apply the 

aforementioned algorithm and to study interclonal recombination. 

Chapter 5 identifies the intraclonal genome diversity of the major P. aeruginosa clones C and 

PA14. 

Chapter 6 highlights the challenges to perform an accurate metagenomic analysis and the 

biases found in SOLiD technologies. It outlines a new bioinformatic model to filter and normalize 

metagenome analysis.  

Chapter 7 presents the main focus of the dissertation, i.e. the execution of the largest and 

exhaustive study to date of cystic fibrosis lower airways metagenomes.  

Chapter 8 is the final chapter where I present the conclusion of the dissertation and future 

perspectives.  

Chapter 9 contains the bibliography. 

Chapter 10 provides supplementary information regarding the metagenomics pipeline used in 

the analysis and the haplotype reconstruction algorithm.  
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Chapter 2 

Background 

 

2.1 Metagenomics  

In traditional genomics, cultivation of microbes is required to sequence new microorganisms. 

However, it has been shown that culture-dependent methods have several limitations because 

in some environments there are microbes that cannot be cultured20, and, therefore, it is 

impossible to calculate the relative abundance of species present in a specific habitat.  

With the ongoing advances in sequencing technologies, especially with the arrival of next 

generation sequencing (NGS) during the last decade, the study of microbial communities as a 

whole has become possible21-22. Therefore, metagenomics offers a new path to study microbial 

communities, their species diversity, structures, phylogenetic composition, metabolic and 

functional diversity.  

Metagenomics is the study of microbial communities, directly from their natural environment, 

without prior cultivation of single organisms and amplification of their DNA23-25. The term 

metagenomics was first coined in 1998 by Handelsman et al.26 in the context of "analysis of the 

collective genomes of soil microflora".  

 

It is important to note that the term metagenomics refers to the shotgun sequencing where all 

DNA from the sample is sequenced without amplification27-28.   

 

In 2004 the first large scale shotgun metagenome study1 was conducted, starting a new era in 

this field. In the following years, the low costs of sequencing and development of 454 

pyrosequencing had facilitated two large metagenome projects, the Metagenomics of the 

Human Intestinal Tract (MetaHIT)29 and the American Human Microbiome Project (HMP)10. To 

date, an immense number of additional metagenomes have been sequenced. All of the data is 

available in public resources like MG-RAST30, IMG31, GOLD32 and NCBI33. 
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2.1.1 16S rDNA microbial sequencing 

The 16S rDNA gene encodes the 16S rRNA which is a component of the prokaryotic ribosomes. 

It consists of highly conserved and variable regions (Figure 2). 

 

 

 

 

Figure 2.  16S rDNA gene showing variable and conserved regions.  

 

Woese et al.34-35 have shown that phylogenetic relationships among bacteria and archaea can 

be determined by comparing ribosomal rDNA genes. PCR of bacterial DNA with "universal" 

primers that are complementary to conserved regions yield sequences with species-specific 

signatures. Therefore 16S rDNA sequencing can provide insight into the diversity and structure 

of a microbial community36-37. 

 

While powerful, 16S rDNA sequencing is not without limitations: 

 It has biases associated with the PCR amplification step which may result in failure to 

identify all members of the bacterial community38-40. 

 Inaccurate diversity estimations could be produced because of different capability of 

resolving taxa41-42.  

 It cannot resolve the biological functions associated with the taxa present in the 

community.  

 

These limitations make metagenomics a more suitable technology to achieve all objectives of 

this dissertation. However, since the sequencing technologies that are used in this thesis 

produce short single-end reads, taxonomic analysis was more difficult than what it could be if 

we used a sequencing platform producing longer paired-end reads.  

 

2.1.2 Computational Challenges in Metagenomics 

Metagenomic analysis is facing various computational problems such as genome assembly or 

taxonomic classification. Several review papers address these challenges22,23,27,43. 

 Genome assembly: Assembling short sequences becomes extremely difficult in 

metagenomics. Highly diverse microbial communities require high sequencing depth to 

obtain complete genomes of lowly abundant species. Even if enough sequences have been 

obtained, sequences from different homologous species could be assembled together 

producing chimeric contigs44-45. 
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 Sequence classification: Determining the genome from which a read was derived is one of 

the primary goals of metagenome studies. Taxonomic classification methods follow one of 

the two approaches (i) composition based approach and (ii) the comparative approach. The 

first method is based on nucleotide composition (i.e. k-mer abundance) or GC-content, 

which is compared with features computed from reference sequences with known taxonomic 

origin. TETRA or PhyloPythia are some examples of k-mer frequency software tools. On the 

other hand, comparative approaches rely on homology obtained by conducting databases 

searches. Such methods perform alignments of sequences or contigs using global and local 

sequence algorithms that generate most matches to a reference database. In general, these 

methods can be divided into methods that are based on Basic Local Alignment Search Tool 

(BLAST)46 homology searches and those which are based on Hidden Markov Model 

(HMM)47 homology searches.  

 

In this dissertation comparative approaches based on alignments against databases will be 

performed. More information regarding the approach used can be found in Appendix1.   

 

2.2 Sequencing Technologies  

2.2.1 First Generation Sequencing 

Almost twenty years after the discovery of the double-helix structure of DNA, the first DNA 

sequencing was conducted by Frederick Sanger in 197548. In 1977 the method was improved 

introducing radioactive or fluorescently labeled dideoxynucleotides (ddNTP) as chain 

terminators. This method can produce sequences up to 1,000bp with a low error rate. Around 

the same time Maxam and Gibert presented a non-enzymatic method, which involves chemical 

modification of the DNA sequence. However, this method produces shorter sequences (up to 

100bp). High cost per base and low throughout are the main limitations of first generation 

sequencing. 

 

2.2.2 Second/Next Generation Sequencing (NGS)  

Lower cost and massively parallel sequencing are the main advantages of NGS. The high 

throughput produced by these technologies enables new research projects such as 

metagenomics. 

 

454 Pyrosequencing  

The 454 pyrosequencing technology is based on a principle called sequencing-by-synthesis. 

First, DNA is denatured and fragmented and secondly each fragment of single-stranded DNA is 

bound to a bead which is encapsulated into a water droplet within an oil phase for emulsion 

PCR (emPCR) amplification. The beads are localized in wells on a plate, and each well contains 
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at most one bead carrying a unique single-stranded DNA fragment.  During the pyrosequencing 

process, light is generated that is proportional to the number of incorporated nucleotides. This 

step is where most errors arise, especially in homopolymeric regions of 3 or more nucleotides 

(Figure 3 a). 

Initially, this technology had a read length of 100bp but can now produce an average read 

length of 400bp.   

 

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) 

SOLiD employs sequencing-by-ligation (Figure 3 b). A set of four fluorescently labeled di-base 

probes compete for ligation to the sequencing primer. After that, a di-base probe is ligated to the 

template DNA, the dye is cleaved off and images are captured. Then, a new cycle begins 5 

bases upstream from the priming site. The process is repeated over seven cycles and the 

process is repeated for five rounds. In each round a new primer is hybridized offset by one base 

(n, n-1, n-2, n-3 and n-4) (Figure4). This technology has a read length of 75bp. The rate of 

accuracy is about 99.94 % over the whole sequence length due to the specificity of the di-base 

probe which is interrogated every 1st and 2nd base at each ligation reaction48.  

 a         b 

 

Figure3. Next-generation sequencing technologies that use emulsion PCR. a Pyrosequencing using Roche 454. b 

sequencing by ligation method using SOLID (Sequencing by Oligonucleotide Ligation and Detection). (Figure taken 

from reference 48). 
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Figure 4. Dual interrogation of each base (Figure taken from Applied Biosystems website). 

 

Illumina/Solexa 

The Illumina/Solexa Genome Analyzer is the most widely used system to date. Illumina 

sequencing is also sequencing-by-synthesis. Sequencing templates are immobilized on a flow 

cell surface.  During the library preparation DNA is fragmented and adapters are appended. 

These adapters are necessary to bind to the complementary sequencing templates of the flow 

cell.  

After binding of the libraries to the flow cell the 

clustering step starts. Each attached oligo is 

extended and a complementary strand is 

synthesized. This double stranded DNA is 

denatured and the original fragments are 

washed away. Each single molecule of bound 

DNA is then amplified by a process called 

bridge PCR (bPCR). The iteration of this 

process produces dense clusters of copies 

around the initial fragment.  

Next, sequencing is performed (Figure 5). 

Sequencing primers are added and hybridized 

to the immobilized fragments. Only one base 

with fluorescently labeled dNTPs is added in 

each cycle to extend these primers. The labels 

are excited with a laser and emitted light signals 

are recorded. The identification of nucleotides is 

based on the signal intensity.  

 

Figure 5. Sequencing-by-synthesis of Illumina  

(Figure taken from reference 48). 

 

Ion Torrent Sequencing  

Also known as pH-mediated sequencing, the method is based on the pH changes occurring in 

the solution. Each time a nucleotide is incorporated into a DNA strand by polymerase, a 
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hydrogen ion is released as a byproduct. These hydrogen ions lead to the pH change which is 

detected by an ion sensor. Labeling of nucleotides and imaging steps are avoided with this 

technique what facilitates shorter sequencing times.  

This technology produces short reads of around 200 bp, it is low cost and high speed. However, 

error rates still remain high.   

 

2.2.3 Third Generation Sequencing  

The third generation sequencing technologies are characterized by a single-molecule real-time 

(SMRT) sequencing which produces longer read lengths and higher throughput. The PCR 

amplification step is eliminated yielding faster sequencing times.   

 

Pacific Biosciences 

Pacific Biosciences is the first third generation sequencing approach to directly observe a single 

molecule of DNA polymerase as it synthesizes a strand of DNA49 without any stop to detect the 

incorporated nucleotide. It uses zero-mode waveguide (ZMW) technology50. Fluorescently 

labeled nucleotides are introduced in the chambers during the polymerase. The label is clipped 

off by the polymerase enzyme and a sensor detects the emission of the light. PacBio RS II 

systems can produce sequences with an average length of 8.5 kbp. However, high error rates of 

11% have limited the application.  

 

Oxford Nanopore Technologies 

Oxford Nanopore involves the use of nanopores, which can be transmembrane cellular proteins 

or artificial holes in a silicon layer51. The single stranded DNA moves through the pore following 

an electrical field put into the chamber filled. Each nucleotide causes a specific change in the 

current which can be detected.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. a) DNA inserted in a nanopore, with speed control provided by a phi29 DNA polymerase (brown) and α-

hemolysin nanopore (gray). (Figure taken from 34) 
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2.3 Cystic Fibrosis  

Cystic fibrosis (CF) is an autosomal recessive genetic disease caused by mutations of the 

Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene. It is characterized by 

chronic airways infections, inflammation and progressive decline in lung function. Further 

features are intestinal disease, pancreatic insufficiency, liver disease and CF-related diabetes. 

Most morbidity and mortality are determined by the progressive lung disease. 

Culture-dependent methods have identified the common human pathogens, S. aureus and H. 

influenza as well as the opportunistic pathogen P. aeruginosa as the most dominant organisms 

associated with respiratory tract infection in CF individuals. However, many other organisms are 

present such as Burkholderia cepacia complex, Stenotrophomonas maltophilia, Achromobacter 

spp. and fungal pathogens such as Candida albicans and Aspergillus fumigatus (Figure 7). 

Recently culture-independent methods have revealed the presence of a polymicrobial 

community in the airways of CF patients52-54. Many organisms not previously detected have 

been reported such as Streptococcus spp., Prevotella spp., Veillonella spp. and other anaerobic 

organisms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Prevalence of respiratory pathogens according to patients' data from Cystic Fibrosis Fundation Patient 

Registry, 2010 Annual Data Report.  

 

The role of anaerobes in the progression of CF airway disease is not clear. However, recent 

studies have shown that anaerobes are characteristic inhabitants of the upper and lower 

airways of healthy non-CF humans55 and are also associated with less inflammation and better 

lung function in CF individuals56. These results suggest that anaerobes are an indicator of 

health in CF patients.  
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The following paragraphs will highlight some characteristics of the dominant CF species with 

special attention to P. aeruginosa and S. aureus, which are involved in the second topic of my 

thesis.   

 

Pseudomonas aeruginosa 

P. aeruginosa is the most common pathogen found in CF individuals. After colonization and 

rapid adaptation, it established a chronic infection, which is responsible for the large majority of 

morbidity and subsequent mortality in CF patients57-58. The strong inflammatory response 

caused by the infection with this bacterium leads to lung damage and lung decline in CF 

patients. 

Often, this bacterium undergoes morphological changes. It becomes immobile, reduces the 

production of virulence factors, changes its lipopolysaccharide (LPS) structure59 and becomes 

mucoid60. P. aeruginosa has the capacity to form biofilms which contribute to colonization and 

chronic infections. The mucus present in the epithelial cells of CF individuals facilitates the 

adhesion of the biofilm to the surface. Biofilms confer multi-drug resistance and reduce the 

immune response of patients, what makes it more difficult to eradicate this bacterium.  

This bacterium possesses surface components such as pili and flagella which are implicated in 

colonization and the type III secretion system which allows bacteria to inject toxins directly into 

the host cell.  

The interclonal and intraclonal population structure of P. aeruginosa as well as the role of 

recombination in this bacterium will be described in Chapters 3, 4 and 5.  

 

Staphylococcus aureus 

S. aureus is the most common gram-positive bacterial pathogen recovered from the respiratory 

tract of infants and children with CF. S. aureus causes an inflammatory response which can lead 

to irreversible lung damage.  

This bacterium grows typically aerobically but also as facultative anaerobe. It is capable of 

forming biofilms63. It has developed resistance to methicillin through the acquisition of the mecA 

gene (MRSA). 

Special aspects of this bacterium associated with chronic infection are the appearance of small 

colony variants (SCVs). SCVs are characterized by a slower growth rate, reduced expression of 

haemolysins, but high resistance rates against many antibiotics61-62.   

S. aureus expresses numerous virulence factors, which promote tissue colonization and tissue 

damage. An example is the Panton-Valentine leukocidin (PVL), which is a cytolytic toxin that 

forms pores in the membranes of leukocytes. It has been associated with severe skin infections 

and necrotizing pneumonia. 

The role of recombination in this bacterium will be described in Chapter 3.  
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Burkholderia cepacia complex 

Burkholderia cepacia complex (Bcc) is the collective name for a group of seventeen closely 

related bacteria which have been isolated from natural environment and human infections. 

Although it is not the most common bacterium, it is amongst the most virulent bacterial 

pathogens isolated from individuals with CF. Long-term respiratory infections with Bcc in CF 

patients generally induces a rapid decline in lung function and in some cases a fatal necrotizing 

pneumonia called "cepacia syndrome". Bcc bacteria are often resistant to most used antibiotics, 

therefore pulmonary colonization with Bcc is associated with a high risk of death64. 

 

Stenotrophomonas maltophilia and Haemophilus influenzae 

S. maltophilia is a Gram-negative, biofilm-forming bacterium. It is an organism of low virulence, 

however, is an emerging multi-drug resistant opportunistic pathogen in CF individuals. Recently, 

it has been shown to be capable of colonizing CF airways with lower levels of lung function65. 

H. influenzae commonly infects the respiratory tract of young individuals with CF. It has been 

found to be capable of forming biofilms in the airway epithelium66. The non-encapsulated H. 

influenzae (NTHi) serotype is associated with chronic lung infections and acute exacerbations in 

CF patients. NTHi possesses adherence factors which may play a role in colonization and 

persistence in the human respiratory tract.  

 

2.4 Bacterial recombination  

Recombination is one of the main evolutionary processes that generate genome variation in 

species, it is a fundamental driving force in evolution, allowing different evolutionary histories to 

different species and between different regions of a genome.  

Most of the recombination studies have been done on humans. However, many questions are 

still unanswered regarding the details of bacterial recombination process as for example, how 

many recombinations occur in every region of the genome or how recombination rates change 

over time.  

Determining the frequency of recombination will be important to calculate the extent to which 

genes are exchanged within the same population or between different ones. Specific 

chromosomal regions of the genome have different recombination rates. 

The importance of recombination in the evolution of bacterial pathogens has become a very hot 

topic of research. Changes in fitness or phenotype of bacterial genomes including increases or 

decreases in virulence or pathogenicity are known to be associated with recombinant genomes. 

Different comparative genome analyses of bacterial species have shown that the DNA 

exchanged and integrated in the genome seems to confer different pathogenicity levels in some 

strains of the same species67. 
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There are three mechanisms of bacterial recombination, i.e. transduction, transformation and 

conjugation. Transduction is the process by which a virus transfers genetic material from one 

bacterium to another. Transformation involves the internalization and chromosomal integration 

of foreign DNA. Conjugation requires cell-to-cell contact to transmit DNA from donor to recipient. 

The capability of these mechanisms determines the extent of frequency of recombination and 

will be the driving force of adaptation and evolution of a bacterial species. 

 

Next generation sequencing (NGS) technology has provided an increase in the number of 

sequenced genomes and has offered the opportunity to analyze the recombination events 

across a higher number of species genomes.  Most of the bacterial recombination studies have 

used the multilocus sequence typing (MLST) procedure, which identifies all the single 

nucleotide polymorphisms (SNPs) over the sequence of seven housekeeping genes, given a 

specific allelic profile to each sequence type. This approach reveals the importance of 

recombination in the evolutionary histories of bacterial species. 

 

However the knowledge of the rate and tract length of homologous bacterial recombination is 

still limited. Therefore a novel method to quantify homologous recombination by reconstruction 

of haplotypes in described in Chapter 3. 
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Chapter 3 

Bacterial recombination analysis 

based on haplotype construction 

 

3.1 Background 

Recombination is a key mechanism that drives the architecture and evolution of bacterial 

genomes. Recombination in bacteria, in contrast to eukaryotes where recombination involves 

the process of reciprocal exchange of genetic material between homologous chromosomes, 

results in the addition of DNA, homologous or non-homologous, to another genome. 

Recombination in bacteria occurs through unidirectional transfer of genetic material from the 

donor to the recipient cell by three different mechanisms: transformation (novel genes appear in 

bacteria by taking up external DNA molecules from the environment), transduction (bacteria 

receive DNA from bacteriophage) and conjugation (the exchange of DNA is carried out by 

physical contact between two bacteria). Non-homologous recombination occurs when a foreign 

DNA segment is inserted into a position in the host genome. This event is called lateral (or 

horizontal) gene transfer 68-69. 

 

Bacterial recombination does not occur in every generation and its frequency depends on the 

successful rate of DNA exchange as well as different biological and ecological factors70. 

Recombination events can be traced by either hybridization or sequencing technologies that are 

able to detect sequence variants or insertions of novel DNA. Prior to the advent of next 

generation sequencing methodology low resolution maps of recombination were constructed 

until the 1980s by genetic means and later by Sanger sequencing of a few housekeeping loci. 

The latter method called ‘Multilocus sequence typing’ (MLST) provided an overview of global 

recombination rates in a bacterial species. With more and more sequencing data sets at hand, it 

now becomes feasible to identify recombination rates and recombination breakpoints from high-

throughput whole genome sequencing rather from multiple short regions.  
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3.2 About the manuscript 

Here I introduce a novel method for the analysis of recombination breakpoints in bacterial 

genomes. Blocks of conserved sequence contigs are detected from pairwise comparison of 

bacterial genomes. The sequence of the core genome, i.e. the part of the genome that is 

conserved among all clone types of a bacterial species, is searched for single nucleotide 

sequence variants (SNPs) that are present in at least two genomes derived from isolates of  

spatiotemporally unrelated habitats. Pairwise alignment of genome sequences identifies the 

sequence of syntenic SNPs that are then converted from the genome coordinates into the 

physical length of nucleotide sequence. By performing pairwise comparisons of all genome 

sequences in the sample, the output is the distribution frequency of identical sequence length in 

the bacterial species of interest. In analogy to the terminology in eukaryotes, we simply define 

the ‘sequence of syntenic SNPs’ as a ‘haplotype’. Phylogenetic trees are then constructed 

based on the criterion of the ‘number of haplotypes shared between two bacterial strains’. This 

approach has been applied to recombination analysis of a) 20 P. aeruginosa genomes that are 

representative for the major 20 clone types in the population (see Chapter 4) and b) 100 

genomes of isolates belonging to the two major P. aeruginosa clones named C and PA14 (see 

Chapter 5). Moreover, I analyzed genomes of the second most prominent pathogen in cystic 

fibrosis airways, Staphylococcus aureus (see below). 

 

Author’s contribution. 

The author conceived the algorithm, wrote and set up the software pipeline, performed all 

subsequent genome analyses and drafted the manuscript. Genome sequences were either 

generated in-house or were downloaded from the NCBI web-site. 

More information regarding the new algorithm can be found in Appendix2.   

For Tables, please refer to the DVD attached to the thesis. 
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Abstract 

Background: The recent developments in next generation sequencing technologies enable 

new possibilities for the analysis of large volumes of DNA sequences. New statistical methods 

are required to detect signatures of natural selection in genomic data. Analyses of single 

nucleotide polymorphisms (SNPs) in the DNA of a species allows for the identification of 100% 

conserved stretches of sequences called haplotypes in diploid organisms which can provide 

information in addition to the established recombination methods. Using a matrix based binary 

algorithm we introduce a new approach for ‘haplotype’ analysis of the bacterial genome which is 

generally applicable to bacterial population genetics.  

Results: Haplotypes defined by the length of syntenic segments with identical SNPs were 

derived from pairwise comparisons of bacterial genomes.  Two matrices were constructed that 

contained columns of all quality-controlled SNPs ordered by genome position of the reference 

and rows of the bacterial isolates of interest respectively. SNP syntenies were extracted from 

pairwise comparisons of rows and converted into physical length. The outcome is the 

distribution of the length of haplotypes in the analyzed strain sample that can be exploited to 

visualize the relatedness of clades in a tree. This approach was applied to genome sequences 

of Staphylococcus aureus and Pseudomonas aeruginosa strains. 

Conclusions: Pairwise genome comparisons of SNP synteny yield information about linkage 

and recombination in the core genome as a measure of the population structure of a taxon or a 

clonal complex.   

Keywords: Bacterial recombination, haplotypes, Staphylococcus aureus, Pseudomonas 

aeruginosa. 
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Background 

Recombination is a fundamental process in bacterial evolution that generates genome variation. 

Bacteria are prokaryote organisms that reproduce only clonally where DNA transfer is 

unidirectional and always independent of reproduction. However they occasionally exchange 

foreign fragments of DNA horizontally through one of three different processes: transduction 

(DNA introduced by bacteriophage), conjugation (DNA introduced by plasmids), transformation 

(uptake of free DNA from the environment) [1–4]. 

Based on the type of DNA which has been transferred, recombination can generate two 

outcomes, homologous and non-homologous recombination [5]. Homologous recombination 

occurs when the new variation is limited to a new allele, in other words, the DNA from the donor 

cell replaces its homologous allele in the recipient cell. This type of recombination requires 

incoming DNA to be highly similar to the recipient DNA. Non-homologous recombination 

happens when a novel gene or fragment of DNA is transferred from the donor cell into the 

genome of the recipient cell. Non-homologous recombination is often known as lateral gene 

transfer (LGT).  

Bacterial genomes are composed of a core genome, which contains genes that are shared by 

all strains of the species, and an accessory genome, consisting of non-essential genes that 

might or might not be present in a given strain [6]. 

Multiple methods have been developed to identify genetic recombination in bacterial genomes. 

Most studies used multilocus sequence typing (MLST) [7, 8], which identifies all single 

nucleotide polymorphisms (SNPs) of seven housekeeping genes, giving a specific allelic profile 

to each sequence type. Alternatively, with next generation sequencing becoming a rapid and 

affordable technology, linkage and recombination can be deduced from whole genome SNP 

comparison. This approach is a timely topic in eukaryotic genetics where the genome-wide 

reconstruction of haplotypes provides comprehensive information about genome organization 

and diversity at the species and subspecies level [9–12]. 

Bacteria are haploid organisms, but in analogy to studies in diploid organisms linkage and 

recombination can be deduced from pairwise genome comparisons of strains that belong to the 

same species or infrataxonomic ranks thereof. Here we describe a straightforward approach to 

calculate the stretches of shared identical sequence (‘haplotype’) in taxa or clonal complexes 

from combinatorial pairwise whole genome SNP comparisons as a measure of the relatedness 

of strains or clonal complexes. One genome is taken as the reference and all SNPs seen in at 

least two strains are used for the analysis. When differentiated by genome position, gradients of 

recombination frequency within the core genome are ascertained. We illustrate the approach 

with a data set of Staphylococcus aureus and Pseudomonas aeruginosa genomes.  
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Methods 

P. aeruginosa and S.aureus genome sequences 

Representative strains of the 20 most common clonal complexes in the P. aeruginosa 

population were sequenced on an Illumina Genome Analyzer II [13]. Reads were aligned to the 

P. aeruginosa PAO1 reference genome (NC_002516.2) using the software SARUMAN (version 

1.0.7) [14] with a maximum of 8 mismatches per read.  SNPs were extracted with samtools and 

the core genome SNPs identified. Forty-one genome sequences of S. aureus were downloaded 

from the NCBI database (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/) in March 2015. SNPs 

were extracted with the open source software package MUMmer, version 3.0 [15]. MUMmer’s 

alignment and SNP calling utilities (nucmer and show-snp) were used with the default 

parameters. The genome of strain “Newman” [16] was taken as reference. Mutations occurring 

only in a single P. aeruginosa or S. aureus strain were filtered out. 

Finally, 58 genome sequences of P. aeruginosa clone C isolates [17, 18] were sequenced on a 

SOLiD 5500XL system with 75 bp read length. Reads were aligned to PAO1 reference genome 

using the program NovoalignCS (www.novocraft.com). SNPs were extracted using samtools.  

 

Haplotype definition 

Different types of methods have been proposed for defining haplotypes. They can be classified 

into two groups: the first group uses the pairwise linkage disequilibrium to identify recombination 

areas [19] and the second group defines haplotypes as blocks with limited haplotype diversity 

[20]. In line with the latter definition, we define a haplotype as a block of syntenic SNPs that are 

shared by two genomes.  

 

Haplotype analysis algorithm  

To simplify the understanding for the reader we will explain the algorithm based on the 41 S. 

aureus genomes. To identify haplotypes, a matrix was created where each column represents a 

SNP ordered by genome position and each row contains a strain (reference and 40 other 

strains). The value of 1 was assigned to the alternative nucleotide and the value of 0 was 

assigned to the nucleotide matching with the reference (Figure 1A). SNPs found in only one 

strain were excluded. 

 

To perform all 








2

41
 pairwise comparisons a second matrix was created whereby each row 

represents the comparison between two strains and each column represents a SNP position 

(Figure 1B). To identify haplotypes, the matches of identical values were counted in each row 

until the first mismatch (Figure 1B). All haplotypes of 820 pairwise comparisons were sorted by 

number to evaluate the frequency distribution. Alternatively, the physical length of each 

haplotype was calculated from the genome positions of the SNPs. Since the first and last 

positions of a n SNP haplotype defined by the SNP contig SNPm…SNPm+n are located within the 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/
http://www.novocraft.com/
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intervals SNPm-1-SNPm and SNPm+n-SNPm+n+1, respectively, the start and stop positions of a 

haplotype were arbitrarily assigned to the midpoints of the intervals.   

To construct a phylogenetic tree, the haplotypes of all pairwise comparisons were sorted by 

decreasing number of successive SNPs and converted into ranks. Each pairwise genome 

comparison was then represented by the sum of rank numbers of their haplotypes which was 

used as input (Figure 1C) to the program SplitsTree (version 4.0) [21] to generate a neighbor 

joining tree (Figure 2).  

 

Results and discussion 

There were 136,258 SNPs and a total number of 8,704,567 haplotypes in the S. aureus 

genome data set, whereby the largest haplotype consisted of 2,450,522 nucleotides. In the P. 

aeruginosa genomes 113,172 SNPS and 3,779,224 haplotypes were identified, whereby the 

largest haplotype had 112,776 nucleotides between unrelated clones. 

Recombination is studied in the Figure 3 which shows the frequency distribution of haplotypes 

as a function of number of consecutive syntenic SNPs in paired comparison of strains (N). The 

analysis shows that the median length of paired conserved sequences is about 5 syntenic SNPs 

for P. aeruginosa and S. aureus.  

The analysis of P. aeruginosa clone C isolates and ST5 (ECT-R2, Mu3, Mu50 and N315) strains 

of S. aureus revealed a median length of paired conserved sequences of 10 and 33 syntenic 

SNPs, respectively.  

Figure 4 shows the frequency of syntenic SNPs SNPm…SNPm+n as a function of the number n 

of successive SNPs. Most SNP contigs are shorter than 100 nucleotides indicating extensive 

sequence diversity at many loci in the two genomes of the taxa. Multiples of three nucleotides 

3p are more frequent than 3p+1 and 3p+2 which reflect the overrepresentation of SNPs at the 

third codon position. The reader is reminded that haplotypes are longer than these SNP contigs 

because start and stop positions of the haplotype reside at genome positions somewhere 

between SNPm-1-SNPm and SNPm+n-SNPm+n+1, respectively. The median value for this extra 

sequence can be roughly estimated from the inverse proportion of the global sequence diversity 

in the core genome of individual strain pairs, i.e. 324 bp for S. aureus and 207 bp for P. 

aeruginosa. 

We mapped all haplotypes onto the S. aureus and P. aeruginosa reference genomes (Figure 4). 

Short and long haplotypes were evenly distributed along the chromosome pairs in both taxa. 

The majority of haplotypes were shorter than 2,000 bp (99.4% in S. aureus and 99.3% in P. 

aeruginosa). The median haplotype length was 51 bp for S. aureus and 99 bp for P. aeruginosa 

(Table 1). Very long haplotypes were only detected among S. aureus strain pairs, the largest 

one of 2,450,522 bp starting at position 37 of the reference genome (Figure 5A).  The closer 

relatedness of subgroups of S. aureus strains was visualized in the neighbor joining tree (Figure 

2A). Two pairs, three trios, one quartet, one septet and a further ten strains segregated into 
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clonal complexes. Consistent with this assignment, intraclonal pairs made up the 100 largest S. 

aureus haplotypes (Figure 6A).  If we confined haplotype mapping to a single S. aureus clone, 

previously unnoticed gradients of haplotype length became apparent. As shown in Figure 7, the 

frequency of haplotypes was similar throughout the chromosomes of cluster 2 strains (Table2), 

but this continuous gradient was interrupted in three small regions characterized by very short 

haplotypes. These regions represent hot spots of mutation and/or recombination. 

The P. aeruginosa strain panel was devoid of very long haplotypes (Figure 5B) consistent with 

the selection of the strains to represent the 20 most common clonal complexes of the P. 

aeruginosa population [13]. Based on haplotype relatedness, the strains segregated into one 

large cluster, one smaller cluster and one outlier (B420) (Figure 2B). The tree corresponds with 

that of whole genome comparisons based on single SNP diversity in the core genome [13]. P. 

aeruginosa strains 1BAE and 3C2A were the most closely related strains in the panel (Figure 2), 

and correspondingly 87 of the hundred largest haplotypes were assigned to this strain pair 

(Figure 6B). These two clones are more related to each other than the average randomly 

selected clone pair and probably emerged recently from a common ancestor. 

Finally haplotypes given in physical length were determined for major clonal complexes.  We 

chose isolates of the most common clone in the P. aeruginosa population, named clone C  [18] 

and isolates of the pandemic healthcare-associated methicillin-resistant S.aureus (MRSA) clone 

ST5 (ECT-R2, Mu3, Mu50 and N315)  (Figure 3B). The median haplotype lengths were 4.2 kbp 

for S. aureus ST5 and 99 kbp for P. aeruginosa clone C. The higher intraclonal relatedness of 

clone C compared to ST5 strains showed up by both the lower number of SNPs and the higher 

physical haplotype length. This data demonstrates that physical length rather than the number 

of syntenic SNPs provides a true estimate of the relatedness of strains within clones or species. 

 

Conclusions 

We have introduced a new algorithm for estimating intraspecies or intraclonal bacterial 

relatedness by genome-wide pairwise comparison of SNPs. In this approach, haplotypes are 

defined by the number of consecutive SNPs shared by two strains. This genetic entity is a 

measure for the size of linkage groups in the bacterial core genome. Related strains share a 

larger portion of longer haplotypes than unrelated strains. The distribution of haplotype length 

along the chromosome highlights the spatial distribution of recombination frequency. In our 

strain panels haplotype frequency was evenly distributed along the chromosome pairs 

suggesting unrestricted gene flow between clonal complexes by recombination. 

The spatial resolution of haplotype analysis is determined by the number and map position of 

the SNPs. Start and stop positions of a haplotype are inherently unknown so that the physical 

length of an individual haplotype cannot be calculated with certainty. This error is of course most 

relevant for short haplotypes if the size of the syntenic SNP contig is smaller than or within the 

same range as the flanking intervals to the adjacent SNPs. However, in case of global genome 

comparisons this error becomes negligible if the start and stop positions of all haplotypes are 



Chapter3. Bacterial recombination analysis based on haplotype construction 

 

23 

 

assigned to the midpoints of the intervals.   

 

Availability 

The developed algorithm for the identification and analysis of haplotypes is available for 

download from: 

http://genomics1.mh-hannover.de/software/haplotypes_identification.pl. 
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Table and figure legends 

Table 1. Distribution of haplotypes based on their physical length. 

Table 2. Top largest haplotype blocks in Staphylococcus aureus and their classification 

in the different clusters. Most of the largest haplotype blocks belong to the main clusters 

(cluster1 and 2). 

Figure 1. Schematic representation of haplotype identification and phylogenetic tree 

generation. (A) The matrix shows the presence or absence of all SNP positions in all strains. 

(B) Example of haplotype (grey) identification (based on the first matrix), counting the 

successive matches of identical values for each pair until the first mismatch. (C) Distance matrix 

to generate the phylogenetic tree. Each value represents the sum of all rank numbers based on 

the number of syntenic SNPs for each haplotype. 

Figure 2. Phylogenetic tree of S. aureus (A) and P. aeruginosa (B), based on neighbor-

joining matrix distance.  

Figure3. Distribution haplotypes based on syntenic SNPs length. (A) It shows the 

distribution of haplotypes in clonally unrelated S. aureus and P. aeruginosa strains  

(B) It shows the distribution of haplotypes in Clone C and ST5 clonal isolates.  

Figure 4. Distribution haplotype blocks based on the nucleotides length. (A) It shows the 

distribution of haplotyes in Staphylococcus aureus where the majority of haplotypes have a 

log(length) less than 3. Two main parallel curves define the distribution of haplotype lengths. 

(B) The graph shows the distribution of haplotypes in Pseudomonas aeruginosa.  

Figure 5. Distribution of the physical length of (A) S. aureus and (B) P. aeruginosa 

haplotypes along the genome. 

Figure 6. Localization of the 100 largest haplotypes in genome segments of 0.5 Mbp [S. 

aureus (A)] or 1 MBp [P. aeruginosa] . 

Figure 7. Distribution of the physical length of S. aureus cluster 2 haplotypes along the 

genome. 
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Chapter 4 

Interclonal gradient of virulence in 

the Pseudomonas aeruginosa 

pangenome  

 

4.1 Background 

Studies of population genomics contribute information on the population structure and its 

genetic variation. Quantifying the rate of mutation and recombination is essential for 

understanding epidemiological changes occurring in a population. 

Studying bacterial populations also allows us to characterize the strains of pathogenic species; 

but it is also important to understand the genetic relationships existing between pathogenic 

strains (causing disease), and non-pathogenic strains of the same species71-72. The comparison 

between both populations may help us to explain the origins of pathogenic strains and identify 

genetic differences between them. 

If there were no chromosomal recombination in bacteria, their populations would have a clonal 

structure whereby genetic variation would be given by mutation73. However, in the real world 

recombination occurs in bacteria and promotes adaptive evolution providing certain allele 

combinations that can be exchanged between different bacterial species, such as antibiotic 

resistance genes, virulence determinants, nitrogen fixation, and so on74-76. 

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that colonizes a wide 

range of niches, it is able to survive in aquatic, animal and human-associated habitats77. As an 

opportunistic pathogen in humans, P. aeruginosa has become one of the main causes of 

infections in patients with advanced stages of chronic obstructive pulmonary disease and 

individuals suffering from cystic fibrosis. P.aeruginosa adaptability and metabolic versatility is 

the fundamental key to its survival (it can grow under aerobic and anaerobic conditions, use 

multiple carbon sources for energy, form biofilms and resist many antibiotics)78-80. 

Next generation sequencing has made comparative genomic analysis of P. aeruginosa possible 

as well as a better understanding of its recombination mechanism. 
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4.2 About the manuscript 

This research project has the aim of resolving the pangenome of P. aeruginosa and identifying 

the genomic variation between strains from environmental and disease habitats. Sequence 

analyses were performed on the 15 most frequent clonal complexes in the P. aeruginosa 

population and 5 most common environmental clones.  

To investigate the role of recombination in genome mobility of P.aeruginosa, the novel method 

for the analysis of recombination breakpoints in bacterial genomes described in Chapter 3 was 

applied. All strain genomes were compared against the core genome of the reference PAO1 in 

pairwise comparisons. Only SNPs present in at least two of the 20 sequenced genomes were 

taken for the analysis avoiding de novo mutations present in a single strain.  

The frequency distribution of the number of syntenic SNPs was determined and transformed 

into the physical length of sequence. 192,443 SNPs were identified in the 210 paired 

comparisons suggesting that the median length of paired conserved sequence is 207 base 

pairs. We found two clones more related to each other than the average, the clones 1BAE and 

3C2A, which points to a recent origin from a common ancestor. 

This analysis revealed that the pangenome consists of a conserved “core” genome of about 

4,000 genes shared among all members of the study, “accessory” genomic elements of a 

further 10,000 genes that are present in some but absent in other strains of P. aeruginosa and 

around 30,000 rare genes present in only few strains. 

Author’s contribution. 

The paper was conducted by Rolf Hilker, Antje Munder and Jens Klockgether.  

I performed the recombination analysis of the P. aeruginosa pangenome as well as the graphs 

and tables describing the recombination process. 

For Tables and Supplementary material, please refer to the DVD attached to the thesis. 
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Summary

The population genomics of Pseudomonas aerug-
inosa was analysed by genome sequencing of repre-
sentative strains of the 15 most frequent clonal
complexes in the P. aeruginosa population and of the
five most common clones from the environment of
which so far no isolate from a human infection has
been detected. Gene annotation identified 5892–7187
open reading frame (ORFs; median 6381 ORFs) in
the 20 6.4–7.4 Mbp large genomes. The P. aeruginosa
pangenome consists of a conserved core of at least
4000 genes, a combinatorial accessory genome of a
further 10 000 genes and 30 000 or more rare genes
that are present in only a few strains or clonal
complexes. Whole genome comparisons of single
nucleotide polymorphism synteny indicated unre-
stricted gene flow between clonal complexes by
recombination. Using standardized acute lettuce,
Galleria mellonella and murine airway infection

models the full spectrum of possible host responses
to P. aeruginosa was observed with the 20 strains
ranging from unimpaired health following infection
to 100% lethality. Genome comparisons indicate that
the differential genetic repertoire of clones maintains
a habitat-independent gradient of virulence in the
P. aeruginosa population.

Introduction

Pseudomonas aeruginosa is a ubiquitous metabolically
versatile gammaproteobacterium that can thrive at low
densities within the range of 4–42°C in inanimate
aquatic habitats and can colonize the surface of animate
hosts ranging from worms and flies to plants and
mammals (Ramos, 2004–2010a,b). Being an opportun-
istic pathogen, P. aeruginosa causes a wide range of
syndromes in humans that can vary from local to sys-
temic, subacute to chronic, and superficial and self-
limiting to life-threatening.

The P. aeruginosa population has an epidemic struc-
ture (Pirnay et al., 2009; Selezska et al., 2012). By
genotyping a large collection of strains from environ-
mental and disease habitats with a custom-made
multi-marker array, we have identified several hundred
different clonal complexes, the majority of which are rare
(Wiehlmann et al., 2007; Cramer et al., 2012). The 15
most frequent clones make up about 40% of the contem-
porary population. Members of the two major clones C
(Römling et al., 2005) and PA14 (Rahme et al., 1995)
were sampled from salt and fresh water, secluded
national reserves, anthropogenically polluted sites,
plants, wild and domestic animals, and acute and chronic
human infections. In other words, the two global clones
are everywhere. However, the next frequent clones pre-
ponderate for geographic areas and/or habitats. Numer-
ous clones have no representative as yet among the
subset of human infections, and conversely, clones that
had caused outbreaks of nosocomial infection still lack
an environmental isolate in our strain collection. These
data suggest that the P. aeruginosa population consists
of global and local generalists on one hand and niche
specialists on the other. There even may exist an
interclonal gradient of pathogenicity ranging from innocu-
ous to highly virulent clones.
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In this study, we have analysed the genomes of 15
P. aeruginosa strains that are representative for the 15
most frequent clonal complexes in the P. aeruginosa
population. Based on the hypothesis that clonal com-
plexes may occur in the environment that cannot cause
disease in humans, we added five more strains from soil,
plants and aquatic habitats to this panel for genome
sequencing, each of which representing a common clonal
complex of which so far no isolate from a human niche
has been detected. To address this issue of whether there
is an association between clonal frame and virulence, we
chose acute lettuce (Starkey and Rahme, 2009), Galleria
mellonella (Pustelny et al., 2013) and murine airway infec-
tion models (Wölbeling et al., 2011) to compare the patho-
genic capacity of the 20 strains. Under the strictly
standardized conditions of these infection models, an
unexpectedly large variability of virulence was discovered
among the 20 strains.

The genome sequences of numerous P. aeruginosa
strains have meanwhile been deposited in databases
(Winsor et al., 2011). However, all sequenced strains
apart from PA14 belong to uncommon clonal complexes
in the bacterial population. Sequencing of our strain panel
thus provided the opportunity to compare the gene
content and sequence diversity among the most common
clonal complexes and to estimate the gene pool of the
pangenome of P. aeruginosa.

Results and discussion

The P. aeruginosa pangenome

The 15 most common clonal complexes in the
P. aeruginosa population were represented by isolates
from the environment (2×), acute eye infection (1×),
community-acquired pneumonia (1×), intubated patients
(3×) and chronic airway infections of individuals with
cystic fibrosis (CF) (5×) or chronic obstructive pulmonary
disease (COPD) (3×). Five further environmental isolates
were recovered from plants (2×), soil (1×), fresh (1×) and
salt water (1×) respectively (Fig. 1; Table 1).

The median genome size of the 20 strains was
determined to be 6.8 Mbp (range 6.4–7.4 Mbp; Table 1),
which is larger than that of the completely sequenced
P. aeruginosa genomes deposited in the Pseudomonas
Genome Database (range 6.2–6.8 Mbp, median 6.4 Mbp)
(Winsor et al., 2011). Annotation identified 5892–7187
open reading frames (ORFs; median 6381 ORFs) in the
20 individual genome sequences (Table 1). The 20 strains
and reference strain PAO1 (Stover et al., 2000) share
4748 ORFs (Fig. 2), suggesting that the core genome
common to all P. aeruginosa should consist of more than
4000 ORFs. Altogether 13 527 different ORFs were anno-
tated in the 21 genomes (Table S1). As highlighted pars
pro toto for four genomes in Fig. 3, the gene content is

combinatorial in P. aeruginosa (Lee et al., 2006) which
primarily reflects the combinatorial composition of the
accessory genome with genomic islands (GIs) and inser-
tions in regions of genomic plasticity (RGPs) (Mathee
et al., 2008; Klockgether et al., 2011). Heatmaps visualize
the variable presence and variable conservation of GIs
and RGPs (Fig. 4A and B) in the 20 clonal complexes.
None of 20 known GIs and only 16 of 245 known RGPs
were present as complete copies in all 20 sequenced
genomes.

Annotation identified 29–802 (median 167) genes that
were detected in only one of the 20 genomes (Table S1).
The major portion of these genes is organized in operons
or DNA blocks of up to 312 ORFs. Most genes were
assigned to the categories of nucleic acid metabolism,
mobile genetic elements or hypotheticals. The disease
isolates additionally carried a few paralogues of house-
keeping enzymes and/or elements of mobility or secre-
tion, the most spectacular example being an additional
set of pilus biogenesis genes in the intubated patient
isolate E429 (Table S1). The environmental isolates
harboured larger sets of strain-specific genes than the
clinical isolates, and these genes conferred numerous
extra potential for bioenergetics, metabolism, trans-
port and immunity such as a CRISPR-Cas system
(Bondy-Denomy et al., 2013). Recurrent features were
operons for the biogenesis of heme proteins and for the

Fig. 1. Relatedness of the 20 sequenced strains. Starting from the
GeneChip multimarker genotypes (Wiehlmann et al., 2007), the
relatedness of strains was calculated in a 13-dimensional
Manhattan space. The genetic distance was visualized by applying
an optimized spring model for minimal stress in the GRAPHVIZ

package (Gansner and North, 2000; Gansner et al., 2005). The
localization of the 20 clonal lineages was based on the whole
dataset of 1400 independent P. aeruginosa isolates. The size of the
symbol represents the square root of the abundance of the clonal
lineage in the P. aeruginosa population (Cramer et al., 2012).
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transport and metabolism of amino acids and sulphur
compounds.

Our genome datasets of the most frequent clonal com-
plexes in the population suggest that the P. aeruginosa
pangenome consists of a conserved core genome of at
least 4000 genes, an accessory genome of common GIs
and RGPs of about a further 10 000 genes and rare genes
that are only present in few strains or clonal complexes. In
this and other genome sequencing projects, dozens to
hundreds of genes previously unknown in P. aeruginosa
have regularly been observed whenever a strain of a yet
uncharacterized clonal lineage was subjected to genome
sequencing. Because more than 300 clonal complexes
have been identified for P. aeruginosa to date, we can
estimate a pool of at least 30 000 ‘private’ genes that are
rare or very rare in the P. aeruginosa population. Our
empirical data fit perfectly with Koonin and Wolf’s (2012)
concept that a prokaryotic pangenome is made up of a
small, highly conserved core, a much larger ‘shell’ of
genes with limited conservation and a vast ‘cloud’ of rare
poorly conserved genes.

Sequence diversity in P. aeruginosa

Mapping of the 20 genome sequences onto the
P. aeruginosa PAO1 reference genome identified
sequence variation between PAO1 and the respective
strain at 23 911–114 284 positions of the PAO1 genome,
which corresponds to a sequence diversity at the single
nucleotide level of 0.38–1.82% (Table 1, Tables S2A and
S2B). A portion of 8.8–10.1% of single nucleotide

polymorphisms (SNPs) caused an amino acid substitution
in ORFs. Based on the criterion of single nucleotide sub-
stitution (SNP) diversity, the clonal complexes were
grouped into two clusters and one outlier (B420) (Fig. 5).
The larger cluster including the most abundant clone C

Fig. 2. The pangenome of the 20 sequenced strains representing
the most common clonal complexes in the P. aeruginosa
population. P. aeruginosa PAO1 was included as the reference
strain. The coding genetic repertoire of the core genome and of the
pangenome was constructed as follows: starting from the most
frequent clone C (hexadecimal code C40A), core and pangenome
were stepwise constructed by the addition of ORFs not present in
the predecessor (pangenome) or by the substraction of ORFs
absent in the successor (core genome). The numbers were
obtained by the core and pangenome functions of EDGAR.

Fig. 3. Venn diagram of the number of strain-specific and shared
ORFs in a panel of four P. aeruginosa strains consisting of the
apathogenic B420 strain, the highly virulent F469 strain and the two
strains belonging to the major clones C (C40A) and PA14 (D421).

Fig. 4. Presence of known genomic islands and RGPs of the 20
sequenced genomes. Strains are grouped by similarity of their
repertoire of genomic islands and RGPs. Coverage of an island or
RGP is depicted in colour code ranging from lime (100% absent)
via dark-green, black, crimson to light red (100% present).
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(C40A) differs at 0.38–0.48% positions from the PAO1
genome, whereas the smaller cluster including the
second most abundant clone PA14 (D421) exhibits a
sequence diversity of 0.85–0.88% (Table 1).

Most oligonucleotide insertions or deletions were in
frame and caused the incorporation or loss of a single
codon (Tables S2A and S2B). Single nucleotide out-of-
frame mutations predominantly affected conserved
hypotheticals. Deleterious frameshift mutations in func-
tionally characterized genes were only detected in the 13
clinical isolates of our panel but in none of the seven
environmental isolates. Recurrent loss-of-function hits
were observed in gene clusters encoding the biosynthesis
or regulation of flagella, pili, quinolones, the O-antigen of
lipopolysaccharides, effectors of type III secretion,
siderophores and their receptors and the biosynthesis of
the antimetabolite L-2-amino-4-methoxy-trans-3-butenoic
acid (Lee et al., 2010) (Tables S2A and S2B). This spec-
trum of mutations is consistent with a conversion of bac-
terial phenotype that often occurs during human
infections, i.e. loss of motility, LPS deficiency and modu-
lation of virulence, signalling and iron homeostasis
(Döring et al., 2011).

Genome mobility

Lateral gene transfer and recombination shape the
dynamics of bacterial genomes. The combinatorial reper-
toire of GIs and RGPs (Fig. 4) of the 20 strains indicates
a continuous horizontal gene flow between the clonal
complexes of P. aeruginosa. Numerous but not all strains,
for example, shared complete copies of the LES-

prophage 1 and LESGI-4 (Winstanley et al., 2009) and
harboured similar but not identical members of the PAGI-2
and pKLC102 island families (Klockgether et al., 2007).

To investigate the role of recombination in genome
mobility of P. aeruginosa, all positions in the PAO1 core
genome were marked wherein at least two of the 20
sequenced genomes a nucleotide substitution had been
reliably identified. Then the frequency distribution of N, i.e.
the number of syntenic SNPs, was determined along the
core genome in paired comparisons of strains (Fig. 6) and
converted into the physical length of sequence. The
analysis of 192 443 SNPs in the 210 paired comparisons
(Fig. S1) revealed that the median length of paired con-
served sequence is 207 base pairs. Of the 110 blocks that
are longer than 20 kbp in size, 78 were assigned to the
pair of 1BAE/3C2A including the longest stretch of
90 949 bp (Table S3). These two clones are more related
to each other than the average randomly selected clone
pair and probably emerged recently from a common
ancestor.

These whole genome comparisons of SNP synteny
demonstrate that 75% of the blocks of identical sequence
in the core genome that are shared by two clonal com-
plexes are smaller than 350 base pairs. With the possible
exception of two regions around 1.0 and 3.5 Mbp in the
PAO1 genome (Fig. 6, Table S3), short blocks were
evenly distributed along the chromosome suggesting
unrestricted gene flow between clonal complexes
by recombination. This conclusion is supported by the
matching topology of trees irrespectively of whether the
construction was based on syntenic SNPs – commonly
termed a haplotype in case of diploid genomes – or on
SNPs treated as independent singletons (Fig. 5).

Interclonal gradient of virulence in a murine airway
infection model

Because the lower airways are the habitat where
P. aeruginosa causes most morbidity and mortality in
humans (Döring et al., 2011), we tested in a standardized
infection model (Wölbeling et al., 2011) whether human
disease isolates are more proficient in causing airway
infections than isolates from the environment.

Groups of 20 10 week old female C57BL6J mice were
inoculated with 1.5 × 106 colony-forming units (cfu) of the
respective P. aeruginosa strain into their lower airways by
nasal instillation. The course of the infection was then
monitored over 144 h by ethological score, body weight,
body temperature and lung function. End-points after 6
and 24 h of infection were bacterial cfus, cytokine levels
and histology of the murine lungs.

The experiments uncovered a strong interclonal
gradient of virulence among the sequenced strains. Mice
inoculated with the C40A strain or the B420 outlier

Fig. 5. Phylogenetic tree of the sequenced P. aeruginosa strains
based on the paired comparison of SNPs in the core genome. The
scale indicates the sequence diversity.
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behaved like the mock controls. They did not show any
clinical signs of infection, had an almost normal lung func-
tion during the whole observation period, produced low or
no proinflammatory cytokines during infection and exhib-
ited normal lung histology (Fig. 7). The other extreme was
observed with the airway isolates of clones OC2E, F429,
E429, F469 and the ocean isolate of clone EC21, the
latter four grouping with D421 in the smaller genome
cluster (see Fig. 5). The same dose as used for C40A or
B420 was 100% lethal with these five strains; within 72 h
all mice succumbed to death (Fig. 7). The mice did not
control the infection as it was indicated by the irreversible
decline of body temperature, body weight and lung func-
tion, the persistent production of tumour necrosis factor-α
(TNFα), interleukin-1ß (IL-1ß) and keratinocyte-derived
cytokine (KC) (Fig. S2), and the massive infiltration of
neutrophils into the lung (Fig. 7). The bacteria persisted
in the lungs and even replicated extracellularly and
intracellularly (EC21, OC2E, F469). An intermediate phe-
notype was seen with the 13 other strains including D421
(Fig. 7). The four more virulent strains in this group killed
11–75% of the infected mice, whereas no lethality was
observed with the other nine strains. All survivors showed
an intermittent drop of weight, temperature and lung func-
tion, which peaked 6–12 h after infection. Body tempera-
ture and behaviour normalized by 1–2 days, whereas the

recovery of lung function to pre-infection levels required
4–5 days.

In summary, under the conditions of our highly stand-
ardized acute murine airway infection model, the full spec-
trum of possible host responses to P. aeruginosa was
seen that ranged from unimpaired health to 100% lethal-
ity. The pathogenicity of strains did not segregate with
habitat. Both environmental and clinical isolates showed
the same gradient of virulence in our experimental setting.

Acute lettuce and G. mellonella infections

Next, we wanted to know whether similar interclonal
gradients of virulence could also be observed with
plant and invertebrate hosts. We chose the established
G. mellonella (Pustelny et al., 2013; Koch et al., 2014;
Whiley et al., 2014) and Lactuca sativa var. longifolia
models (Aendekerk et al., 2005; Gooderham et al.,
2009; Starkey and Rahme, 2009; Bielecki et al., 2011)
that had been investigated previously in the context of
P. aeruginosa infections (Fig. 8).

Infections of the last proleg of G. mellonella larvae with
5, 10 or 50 cfu of bacteria caused a dose-independent
gradient of virulence among the 20 P. aeruginosa that
differed from the ranking of pathogenicity seen in the
mouse experiments (Fig. 9). Most bacterial strains killed

Fig. 6. Syntenic SNPs in the P. aeruginosa core genome of the 20 sequenced strains and strain PAO1. The term N is the number of syntenic
SNPs in paired comparison of strains. ‘N’ is equivalent to the term ‘haplotype’ in case of diploid genomes. Taking the genome coordinates of
the SNPs, N was converted into the physical length of a block of identical sequence shared by two genomes.
A, B. Frequency distribution of Ni in dependence of N. The double-logarithmic graph in A shows the complete dataset ranging from a million
haplotypes made up of two SNPs to the largest singular haplotypes that consist of more than a thousand syntenic SNPs. The semilogarithmic
presentation in B depicts the frequency distribution of common haplotypes made up of 2–50 SNPs.
C. Frequency distribution of the largest blocks of identical sequence (n ≥ 500) shared by two P. aeruginosa genomes along the P. aeruginosa
chromosome. The genome coordinates of P. aeruginosa PAO1 were taken as reference.

Pseudomonas aeruginosa pangenome 35

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 17, 29–46



F
ig

.7
.

A
irw

ay
in

fe
ct

io
n

of
C

57
B

l6
J

m
ic

e
w

ith
th

e
20

se
qu

en
ce

d
P

.a
er

ug
in

os
a

st
ra

in
s.

E
ac

h
st

ra
in

w
as

te
st

ed
in

20
m

ic
e.

T
he

si
x

m
os

t
vi

ru
le

nt
st

ra
in

s
(F

46
9,

0C
2E

,
E

42
9,

F
42

9,
E

C
21

,
47

8A
)

ar
e

sh
ow

n
in

sh
ad

es
of

re
d,

th
e

m
os

t
av

iru
le

nt
st

ra
in

B
42

0
in

lig
ht

gr
ee

n
an

d
th

e
tw

o
m

os
t

co
m

m
on

cl
on

es
C

(g
en

ot
yp

e:
C

40
A

)
an

d
P

A
14

(D
42

1)
in

da
rk

gr
ee

n
an

d
bl

ue
re

sp
ec

tiv
el

y.
A

ll
ot

he
r

st
ra

in
s

ar
e

m
ar

ke
d

in
gr

ey
.

T
he

m
oc

k
co

nt
ro

l(
m

ic
e

re
ce

iv
ed

P
B

S
)

is
in

di
ca

te
d

in
bl

ac
k.

U
pp

er
an

d
m

id
dl

e
ro

w
:

K
ap

la
n–

M
ei

er
pl

ot
s

(u
pp

er
ro

w
le

ft)
sh

ow
th

e
su

rv
iv

al
of

m
ic

e
af

te
r

na
sa

li
ns

til
la

tio
n

of
th

e
ba

ct
er

ia
(t

=
0

h)
at

24
h

in
te

rv
al

s.
T

he
in

fe
ct

io
ns

w
ith

th
e

11
st

ra
in

s
w

ith
10

0%
su

rv
iv

al
of

th
e

20
m

ic
e

ar
e

re
pr

es
en

te
d

by
cl

on
e

P
A

14
.

T
he

tim
e

co
ur

se
of

be
ha

vi
ou

ra
l

sc
or

e,
re

ct
al

te
m

pe
ra

tu
re

an
d

lu
ng

fu
nc

tio
n

(t
id

al
vo

lu
m

e
an

d
ex

pi
ra

to
ry

flo
w

E
F

50
)

is
di

sp
la

ye
d

fo
r

ea
ch

ba
ct

er
ia

ls
tr

ai
n

by
a

tr
av

er
se

lin
e

of
m

ed
ia

n
va

lu
es

of
th

e
ex

am
in

ed
m

ic
e.

T
he

hi
st

ol
og

ic
al

se
ct

io
ns

(m
id

dl
e

ro
w

,
rig

ht
)

di
sp

la
y

in
fla

m
m

at
or

y
ch

an
ge

s
in

lu
ng

tis
su

e
6

h
(u

pp
er

pa
rt

)
an

d
24

h
(lo

w
er

pa
rt

)
af

te
r

in
fe

ct
io

n
w

ith
st

ra
in

B
42

0
(le

ft)
or

F
46

9
(r

ig
ht

).
In

se
rt

s
pr

es
en

t
m

oc
k

in
fe

ct
ed

an
im

al
s.

Lo
w

er
ro

w
:

To
ta

lc
fu

,
in

tr
ac

el
lu

la
r

cf
u

an
d

T
N

F
α

le
ve

ls
in

m
ur

in
e

lu
ng

s
6

h
(le

ft)
an

d
24

h
af

te
r

in
fe

ct
io

n
(r

ig
ht

)
gi

ve
n

as
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
(S

D
)

(n
=

6)
.

36 R. Hilker et al.

© 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd,
Environmental Microbiology, 17, 29–46



the larvae within the first 24 h, but seven strains moreover
exhibited also a slow-killing mode (Fig. 8).

The inoculation of P. aeruginosa into the midribs of
Romaine lettuce leaves caused rotting of the entire midrib
within 2–3 days. Severity of rotting and intensity of brown

colouration differed by strain (Fig. 8; Table S4). The group
of environmental isolates was more pathogenic than that
of the clinical isolates (U-test, P < 0.01).

The relative pathogenicity of the P. aeruginosa strains
in the murine, wax moth and lettuce models is visualized

Fig. 8. Gradient of virulence of P. aeruginosa in the G. mellonella and L. sativa var. longifolia infection models. The examples illustrate (from
left to right) the phenotype caused by the most virulent, the least pathogenic bacterial strain and the mock control in wax moth larvae (upper
row) and lettuce (lower row).

Fig. 9. Kaplan–Meier plot of the survival of
G. mellonella upon infection with 5 cfu each of
the 20 P. aeruginosa strains.
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in Table 2 by their rank numbers sorted by increasing
pathogenicity. The CF lung isolate 0C2E was the only
strain of comparably high virulence in all three infection
models, and on the other hand the keratitis isolate EA0A
and the COPD isolate 2C1A exhibited below-average
pathogenicity. The remaining 17 strains had variable rank
numbers in the three models. The least pathogenic strains
were B420 in mice, 2C1A in the larvae and 239A in the
lettuce (Table 2).

The differential responses of the three hosts to the 20
P. aeruginosa strains were assessed by the statistical
evaluation of rank number differences. The set of bacterial
strains evoked a significantly different interclonal gradient
of virulence in lettuce than in the two animal models
[degrees of freedom (dF) = 2; χ2 = 49.3; P < 0.001]. This
statement was even valid at the level of individual strains
for the comparison between the murine and the lettuce
habitat (dF = 19; χ2 = 34.4; P < 0.025). This statistically
verified finding indicated that P. aeruginosa orchestrates
differential sets of virulence determinants and mecha-
nisms to conquer its many animate habitats.

Clone F469 and B420 genome comparisons

In our lettuce infection experiments, we bypassed the first
line of protection, i.e. the physical and chemical barrier of
the plant epidermis. In this case, the host–bacterium inter-
action was determined by the response of the plant to
pathogen-associated molecular patterns, siderophores
and antimetabolites (Zhang and Zhou, 2010). In contrast

to plants, the host–pathogen interaction in mammals is
governed by a complex interplay between bacterial fitness
and pathogenicity on one hand and innate and adaptive
immune responses of the mammalian host on the other.
Because among the infections with P. aeruginosa the
lower airways are the most vulnerable target, we were
anxious to analyse the genetic repertoire of the two
P. aeruginosa strains that exhibited the extremes of
lowest and highest pathogenicity in the murine acute
airway infection model. The extremes of virulence were
represented by the innocuous B420 and the lethal F469
strains (Fig. 7).

B420 is the most common clone among isolates
from the inanimate environment (Selezska et al., 2012),
and F469 has been most frequently detected in isolates
from chronic airway infections (Cramer et al., 2012).
Assuming that the divergent phenotypes are at least
partly caused by their genetic blueprints, the B420 and
F469 genomes were examined for discriminating
features (Table S5). The Venn diagram of the D421,
C40A, B420 and F469 genomes (Fig. 3) highlights their
combinatorial composition, i.e. all possible fields of
singles, dyads, triples and quad are occupied by genes.
B420 shares 92.3% of its genes with F469. This large
overlap suggests that just a few features of their
genetic repertoire may account for their differential
pathogenicity.

The annotation of the F469 genome did not readily
explain the high virulence of the strain (Table S5; Fig. S3).
Notable characteristics of the F469 genome, however,

Table 2. Rank presentation of the virulence of the 20 sequenced strains in three infection models.

Strain

Rank number in
murine airway
infection

Rank number in
G. mellonella
larvae infection

Rank number
in lettuce leaf
infection

Sum of rank number
differences between
the three models

Sum of rank
numbers

C40A 2 18 5 32 25
D421 9 15.5 7 17 31.5
F469 20 15.5 2 36 37.5
0C2E 19 20 17 6 56
E429 18 13 9 18 40
239A 14 19 1 36 34
2C22 13 15.5 6 19 34.5
F429 17 5.5 10 23 32.5
B420 1 15.5 14 29 30.5
EA0A 12 2 3 20 17
0812 11 11.5 8 7 30.5
2C1A 10 1 4 18 15
1BAE 8 4 11 14 23
3C2A 7 10 16 18 33
EC2A 6 3 13 20 22
EC21 16 11.5 19 15 46.5
843A 5 5.5 12 14 22.5
0822 4 9 15 22 28
149A 3 7.5 20 34 30.5
478A 15 7.5 18 21 40.5

Rank numbers were assigned to strains from 1 (lowest virulence) to 20 (highest virulence) according to the observed virulence in the infection
models.
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were the high prevalence of transporters and phage-like
DNA and the carriage of unique variants of popN (Yang
et al., 2007) and pilY1 (Bohn et al., 2009). PilY1 and
PopN have been shown to modulate bacterial persistence
in lung habitats and type III secretion of virulence effec-
tors, respectively, and correspondingly the popN and
pilY1 variants in the F469 genome are prime candidates
for future experimental work on explaining the heightened
pathogenicity of F469.

In contrast to F469, the in silico analysis of the B420
genome provided solid evidence why the environmental
B420 strain was innocuous in our airway infection model
(Tables S4 and S5). B420 lacks all genes for the type III
secretion system and its virulence effectors, some genes
of the cupB and cupC fimbrial gene clusters, and the
CFTR inhibitory factor cif. Hence, the B420 strain
is compromised in adhesion to mucosal surfaces and
cytotoxicity and unlike most other P. aeruginosa cannot
perturb the function of mammalian ABC transporters in
epithelial cells (Ballok and O’Toole, 2013; Bomberger
et al., 2014). B420 moreover lacked numerous genes of
the RNA, fatty acid and carbohydrate metabolism. In total,
67 genes linked to KEGG pathways were absent in one or
more of the 20 sequenced strains, 35 of which were not
detected in B420.

Besides the absence of major virulence genes, the
comparatively high number of SNPs and indels (Table 1)
may contribute to the low pathogenicity of P. aeruginosa
B420 in airways. The B420 genome harbours the highest
number of intragenic insertions and deletions among
the 20 sequenced genomes. Interestingly, deleterious
frameshift mutations were rare (Table S6). Most out-of-
frame mutations were located close to the 3′ end of an
ORF and hence may be classified as sequence variants.
If the insertion or deletion was located more proximal in
the coding sequence, the reading frame was retained by
an in-frame deletion or insertion or – more frequently – a
frameshift was rescued by a second frameshift in close
vicinity (Table S6). Such compensatory frameshifts were
typically three to six base pairs apart from each other; the
maximal distance was 18 base pairs. These combined
frameshifts resulted in amino acid substitutions, deletions
of one or two amino acids, or a change of the coding
sequence for three to six successive amino acids. The
short distance between balanced out-of-frame mutations
suggests that in fitness-relevant genes, only those
frameshifts persist in the P. aeruginosa population that are
rescued by no or marginal changes of the amino acid
sequence.

Metabolic competence

The redox-active nicotinamide adenine dinucleotides are
the ‘metabolic currency’ of anabolic (NADPH) and cata-

bolic metabolism (NADH) (Fuchs, 1999). It is textbook
knowledge that the bacterial cell keeps the ratio of
[NADP+]/[NADPH] low and the ratio of [NAD+]/[NADH]
high. [NADH]/[(NAD+) + (NADH)] is usually kept near 0.05
(catabolic reduction charge), and [NADPH]/[(NADP+) +
(NADPH)] is kept near 0.5 (anabolic reduction charge)
(Fuchs, 1999). We examined the 20 P. aeruginosa strains
in their levels of the four oxidized or reduced nicotina-
mide adenine dinucleotides. Unanticipatedly, only a
minority of strains exhibited anabolic and catabolic reduc-
tion charges in the expected range (Fig. 10). Almost all
strains had a higher-than-expected [NADH]/[(NAD+) +
(NADH)] ratio, and half of the strain panel had a lower-
than-expected [NADPH]/[(NADP+) + (NADPH)] ratio. In
other words, the homoeostasis of catabolism and anabo-
lism of P. aeruginosa under our test conditions was differ-
ent from the state that is commonly assumed to be valid
for bacteria.

The nine most common clones displayed a uniform
preponderance of the oxidized state of both NAD and
NADP, whereas the less abundant clones and all the
environmental isolates but 478A had a preference for the
reduced states, particularly NADH (Fig. 10). The pool of
phosphorylated forms needed in most biosynthetic path-
ways only dominated in the most frequent clone C40A. In
all other clones, the pools were either balanced (nine
strains) or skewed towards the dephosphorylated forms
NAD(H). The composition of the nicotinamide adenine
dinucleotide pool in the strain panel was variable and did
not fit with textbook description for most strains. The most
virulent and avirulent strains shared rather similar signa-
tures, indicating that the metabolic competence of a strain
was not directly associated with its virulence in our exam-
ined infection models. In summary, the known metabolic
versatility of P. aeruginosa also manifests in a pronounced
interclonal diversity of its ratio of anabolic to catabolic
reduction charge.

Conclusion

The whole genome comparisons revealed that the major
clonal complexes of the P. aeruginosa population segre-
gate into outliers and two clusters with the ubiquitous
clones C and PA14 as the most prominent representa-
tives. The infections of mice, caterpillars and lettuce with
the test strains uncovered an unexpectedly strong
interclonal gradient of virulence. Numerous virulence
determinants have been discovered in P. aeruginosa by
the comparison of wild-type and isogenic mutant. The
outcome of our highly standardized infection experiments
now allows us to sort these pathogenicity factors by rel-
evance. Type III secretion, adhesins and Cif seem to be
major stand-alone factors for virulence in mice, whereas
the contribution of other elements such as siderophores
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or type II secretion is combinatorial depending on the
asset of pathogenicity factors in the core and accessory
genome of the individual strain.

The individual P. aeruginosa genome consists of a con-
served core, a variable composition of common gene
islands and a small set of rare genes that are chiefly
hypotheticals of unknown function. Although there are
associations between clonal frame and the composition of
the accessory genome (Wiehlmann et al., 2007), the
clonal complexes freely exchange their genes by recom-
bination and transfer of gene islands. The free recombi-
nation of the core genome was deduced from the
frequency distribution of syntenic SNPs in the sequenced
genomes. The key question of molecular epidemiology of
whether a bacterial species has a clonal, panmictic or
epidemic population structure has been typically investi-
gated in the past by multilocus sequence typing (Maiden,
2006) and/or analysis of polyphasic datasets of pheno-
typic polymorphisms (Pirnay et al., 2009). The outcome

was often dependent on the set of parameters selected
for analysis. Paired whole genome comparisons of
haplotype length allow an unbiased and complete analy-
sis with a definitive outcome, and hence we would like to
recommend this approach (see Experimental procedures)
for any further study on bacterial pangenome and popu-
lation structure.

Experimental procedures

Pseudomonas aeruginosa strains

The sequenced P. aeruginosa strains are part of our strain
collection that have been genotyped by a custom-made
microarray (Wiehlmann et al., 2007). The relatedness of
strains by multilocus genotype was calculated by the EBURST

algorithm (Feil et al., 2004). The isolates selected for
sequencing belonged to the 15 most common genotypes or
to the most frequent genotypes that were yet lacking any
clinical isolates (Cramer et al., 2012). The strains were
deposited at the German Collection of Microorganisms

Fig. 10. Ratios of the redox-active
nicotinamide adenine dinucleotides in
overnight stationary cultures of the 20
P. aeruginosa strains. Upper panel (from left
to right): [NADP+]/[NADPH]; [NAD+]/[NADH];
[(NADP+) + (NAD+)]/[(NADPH) + (NADH)];
[(NADP+) + (NADPH)]/[(NAD+) + (NADH)].
Please note the logarithmic scales at the
bottom. Lower panel (from left to right):
[NADPH]/[(NADP+) + (NADPH)];
[NADH]/[(NAD+) + (NADH)].
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and Cell Cultures (DSMZ) and are available under acces-
sion numbers DSM29238-29241, DSM29272-29281 and
DSM29304-29311.

Sequencing

Tagged paired-end and 3 kb mate pair libraries were pre-
pared following the manufacturer’s instructions. The 20
genomes were sequenced on an Illumina Genome Analyzer
II by GATC-Biotech (Constance, Germany). Sequences were
deposited in the European Nucleotide Archive (ENA) hosted
by EMBL/EBI, accession no. PRJEB4961.

Alignment of sequencing reads

One hundred one nucleotide paired-end reads for each strain
were aligned to the PAO1 reference (NC_002516.2) using the
exact and complete alignment software SARUMAN (version
1.0.7; Blom et al., 2011) with a maximum of eight mismatches
per read and standard Levenshtein distance.

The read datasets of strains F469 and B420 were also
mapped to the reference with the alignment software BWA

(version BWA-0.6.1; Li and Durbin, 2009) generating ‘sam’-
formatted alignment files. Unmapped reads were then
extracted from the alignment files with an in-house written
script and assigned to a not-in-reference read pool of each
strain.

Sequence variation analysis

The SARUMAN ‘jok’ read alignment output was processed with
the software READXPLORER (Hilker et al., 2014). The read
mapping data sets were imported into a READXPLORER

project, which includes conversion of the ‘jok’ output into
‘bam’ formatted alignment files. Then READXPLORER was used
to detect single nucleotide substitutions, deletions and inser-
tions. The examined reference position had to be covered
by at least 30 reads of which at least 90% showed the
sequence variation. If a read was mapped to more than one
site in the reference, quality classification was performed
by READXPLORER to assign the read to the best match.
Nucleotide variations compared with the reference were
extracted from the BWA alignment files by using SAMTOOLS (Li
and Durbin, 2009; Li et al., 2009). Nucleotide exchanges
(SNPs) were filtered from the vcf-formatted SAMTOOLS output
files. SNP calls not passing cut-off values for coverage, base
call qualities and SNP-call qualities established during former
evaluations of Illumina sequencing data (Bezuidt et al., 2013)
were excluded from the lists. In addition, SNP calls for strains
F469 and B420 based on the BWA alignment were cross-
checked by comparison with SNP lists generated with
READXPLORER from SARUMAN alignments of the same
sequencing data.

Predictions of small insertions or deletions (indels) in
the F469 or B420 genome compared with the reference
sequence were extracted from the SAMTOOLS output, and also
from alignments with the STAMPY read mapper (Lunter and
Goodson, 2011). Manual inspection of the alignment results
for the respective loci, however, unmasked the majority of
these predictions as false positives. Indel predictions based

on the SARUMAN alignments appeared more reliable but con-
tained false calls or misinterpreted indel events as well.
Therefore, for an in depth analysis of indels in F469 and
B420, SARUMAN predictions and the top candidates from the
BWA/SAMTOOLS and the STAMPY results were assembled in a
candidate list. Alignment results for the loci from this list were
then inspected with the help of the INTEGRATIVE GENOMICS

VIEWER (IGV) (Thorvaldsdóttir et al., 2013) for manual verifi-
cation, modification or dismissal of each indel prediction.
Predicted loci were excluded from the list if they were not
covered by at least five high-quality sequencing reads and
with less than 95% of the reads indicating the indel.

The effects of reliable sequence variations on coding DNA
sequences were identified with the program SNPEFF, version
1.9.5 (Cingolani et al., 2012).

Absent DNA

PAO1 genomic DNA not present in the F469 or B420 genome
was determined by extracting uncovered regions of the ref-
erence from the alignment results. Regions eventually prone
to low or even no coverage due to an extremely high GC
content of more than 80%, which could lower the efficiency of
ligation and/or PCR amplification steps during standard
Illumina sequencing procedures and for which no ‘deletion-
spanning’ sequence reads could be found, were excluded
from the result lists.

De novo assembly

De novo assembly of draft genomes was done with the
NEWBLER assembler (version 2.8) (Margulies et al., 2005).
The minimum contig length was set to 150 bases, and the
internal read quality trimming of NEWBLER was used. The
resulting scaffolds were aligned to the reference strain PAO1
using the contig arrangement software R2CAT (Husemann
and Stoye, 2010).

Sequencing reads assigned to the not-in-reference pools
after the alignments were assembled to larger contigs with
the de novo assemblers NEWBLER (version 2.8) (Margulies
et al., 2005) or VELVET (Zerbino and Birney, 2008). VELVET

version 1.2.03 was used with parameters set to a minimum
read coverage of five and a kmer-size of 31. For F469 and
B420 analysis, both assemblers were used in parallel, and
contigs from both programs were merged in case of comple-
mentary results.

Accessory genome analysis

The assembled contigs, representing the accessory genome
of the analysed strains, were analysed by blastx comparisons
against the UniProt database (Apweiler et al., 2004) in order
to detect known genes from other P. aeruginosa genomes
or genes from other bacterial species in the accessory
genomes. The contigs were also used for the detection of
known P. aeruginosa GIs or RGPs by doing blastn compari-
sons against these sequences. Blastn results were used to
determine presence and degree of conservation of these
elements in the F469 and B420 accessory genomes. In a
second approach, paired-end Illumina reads were aligned
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to known GI and RGPs using BWA (Li and Durbin, 2009) with
default parameters. Uncovered reference regions were iden-
tified using the genomeCoverageBed utility from BEDTOOLS

(Quinlan and Hall, 2010). Coverage percentages were calcu-
lated for each strain using an in-house Perl script. The cov-
erage percentage tables then were used to create the
coverage heatmaps using the gplots R package.

Pan and core genome analysis

Draft genomes were created from the NEWBLER de novo
assemblies as described above. All not-in-reference scaffolds
were appended at the end of the ordered scaffold list. To
prevent gene prediction across scaffold borders, the whole
list of scaffolds was concatenated by a stop linker on all six
reading frames (CTAGCTAGCTAG) using an in-house written
script. Automatic annotation of the draft genomes was done
in GENDB (version 2) (Meyer et al., 2003) using PRODIGAL

(version 2.6) (Hyatt et al., 2010) for gene predictions. The
annotated draft genomes were exported as GenBank format-
ted files from GENDB. Afterwards the GenBank files of the draft
genomes and the reference strain PAO1 were used to create
an EDGAR (version 1.2) (Blom et al., 2009) project for the
pangenome and core genome analysis. The score ratio value
(SRV) (Lerat et al., 2003) used as master cut-off for this
project is 30%. This means that only reciprocal BLASTP hits
for coding sequences with an SRV higher than or equal to
30% are marked as being present in two compared genomes.
Based on this parameter, the pangenome and core genome
were calculated with EDGAR. Additionally, a phylogenetic tree
based on the core genome, a list of singleton genes, which
only occur in one of the genomes, and a list of all pangenome
genes were created with EDGAR.

Syntenic SNPs

Because according to our knowledge the procedure to deter-
mine the number of syntenic SNPs in paired genome com-
parison of bacterial strains has yet not been described, the
analysis is explained in more detail. To simplify the under-
standing for the reader, the entity N, i.e. the number of
syntenic SNPs in paired comparison of two bacterial
genomes, is called a haplotype in analogy to the usage of this
term for diploid genomes.

First, the RGP-free PAO1 core genome sequence was
taken as a reference to identify SNPs in the 20 sequenced
genomes. To construct haplotypes, a matrix was constructed
that contained columns of all 192 443 quality-controlled
SNPs ordered by genome position and rows of all strains
(PAO1 reference and the 20 sequenced strains). The value 0
was assigned to nucleotides that match with the PAO1 refer-
ence, and the value 1 was assigned to the nucleotide substi-
tution. Next, all 210 possible combinations of two genomes
were compared in their similarity of SNP pattern. Haplotypes
were identified by counting successive matches of binary
pattern until the first mismatch. The number N of syntenic
SNPs was then inserted at each SNP position of the
haplotype. For this purpose, a second matrix of haplotypes
was constructed that consisted of all SNP positions as
columns, the 210 paired comparisons as rows and the
numbers of syntenic SNPs, i.e. the haplotypes, as entries.

This matrix was used to extract the haplotypes of the 210
paired comparisons, to determine large haplotypes above a
floating threshold and to evaluate the frequency distribution
of haplotype size in the strain panel. The distribution of
haplotype size along the chromosome was calculated in
sliding windows of 21 successive SNPs. Automatic analysis
was performed with in-house Perl scripts.

Assays of nicotinamide adenine dinucleotides

Strains were precultured in 5 ml of tryptic soy broth (TSB) for
4 h at 37°C. Two hundred microlitres thereof were inoculated
into 20 ml TSB and incubated for 12 h at 37°C and 200 r.p.m.
Bacteria were pelleted and lysed with acid or base. Purified
supernatants were subjected to enzyme cycling-based
colourimetric assay to determine the amounts of NAD+,
NADH, NADP+ and NADPH according to the protocol
described by Kern and colleagues (2014).

Infection experiments

Mice. Ten to twelve week old female C57BL6J mice (Charles
River Germany) were maintained in microisolator cages with
filter top lids at 21 ± 2°C, 50% ± 5% humidity and a 14/10 h
light–dark cycle. They were supplied with autoclaved, acidu-
lated water and fed ad libitum with autoclaved standard diet.
All animal procedures were approved by the local animal
welfare committee and carried out according to the guidelines
of the German regulations for animal protection.

Culturing of bacteria. Strains of the culture collection were
streaked on tryptic soy agar plates and incubated at 37°C for
14 h. Colonies were then inoculated into TSB to a final optical
density of 0.225 at 550 nm. The bacteria were cultured at
37°C for 1 h with shaking, harvested by centrifugation,
washed with HEPES/saline and then re-suspended in Hepes/
saline at a density of 1.0 × 108 cfu ml−1. To adjust for the up to
eightfold different growth rates of the strains, the factors of
dilution were calculated from growth curves of the strains that
had been recorded in prior experiments. This standardized
procedure was applied to all infection experiments.

Murine infection protocol (Fig. 11). Twenty 10–12 week old
female C57Bl/6J mice were anaesthetized (midazolam/
ketamin i.p.) and inoculated with 1.5 × 106 cfu of each
P. aeruginosa strain via intranasal instillation. End-point sam-
pling was performed at 6 and 24 h p.i. on six mice each.
Lungs were weighed and divided into pieces which were
weighed again. The cranial lobe and the middle lobe of the
right lung were put into paraformaldehyde for histopathology;
the caudal lobe and the accessory lobe were shock frozen for
cytokine analysis and the left lung was used for the determi-
nation of total and intracellular cfu. The course of the infection
in the other eight mice was followed for 144 h by regular
assessment (4, 6, 8, 10, 12, 24, 48, 72, 96, 120 and 144 h) of
the behavioural score (Munder et al., 2005), rectal tempera-
ture, body weight and non-invasive headout spirometry.

Murine lung function. Non-invasive head-out spirometry
investigating 14 lung function parameters was performed on
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conscious restrained mice (Wölbeling et al., 2010). In brief,
mice were restrained in glass inserts with a set of membranes
around their neck. Respiration causes air to flow through a
pneumotachograph positioned above the thorax of the mice.
A pressure transducer creates an electrical signal, which is
analysed using special software (NOTOCORD HEM, Version
4.2.0.241, Notocord Systems SAS, Croissy Sur Seine,
France). Spirometry hardware was supplied by Hugo
Sachs Elektronik – Harvard Apparatus (March-Hugstetten,
Germany). The parameters of tidal volume (measured in ml)
and the flow at 50% of the expiratory tidal volume (EF50,
measured in millilitres per second) were selected to charac-
terize murine lung function during infection. Data were ana-
lysed by GRAPHPAD PRISM software (Version 5.0, GraphPad
Software, San Diego, CA, USA). Median values and standard
deviation were calculated. Mice became accustomed to
spirometry by daily training during the 96 h period prior to
infection.

Total and intracellular bacterial cfus

The left lungs of the euthanized mice were ligated, re-
sected and homogenized (Polytron PT 1200 Homogenizer,
Germany). Total bacterial numbers were assessed from
homogenized lung tissue, which was additionally lysed for
10 min in a saponin solution (5 mg ml−1) to release intracel-
lular bacteria. Serial dilutions of the homogenates were cul-
tured on Luria–Bertani plates using the drop plate method
(Herigstad et al., 2001). For determination of the intracellular
bacteria, lung pieces were incubated with polymyxin
(100 μg ml−1) for 1 h, washed three times with PBS and then
processed as described for the determination of total cfus.
cfus were normalized for lung weight.

Cytokine analysis

The shock-frozen lung pieces were homogenized in 400 μl
PBS, and aliquots were used directly in commercial ELISA
assays (Roche or R&D). The ELISA measurements of

cytokines TNFα, IL-1β and KC were performed according to
the protocol of the vendor. Cytokine concentrations were
calculated by comparison with standard curves and were
then normalized for lung weight or lung protein the latter
determined by the Bradford method.

Galleria mellonella infection protocol

Bacteria grown in TSB were adjusted to 2.5 × 102, 5.0 × 102

and 2.5 × 103 cfu ml−1 physiological saline. Ten G. mellonella
larvae per strain and dose were inoculated with 20 μl con-
taining 5, 10 and 50 cfu respectively. Bacteria were injected
into the last proleg of the larvae (Pustelny et al., 2013). Sur-
vival of the larvae at 37°C was monitored for 72 h. Dead
larvae did not respond anymore to tapping and/or turned
black because of melanization. Untreated larvae were used
for controlling the culturing conditions. Larvae injected with
isotonic NaCl solution served as mock control.

Lettuce infection protocol

Leaves of freshly harvested L. sativa var. longifolia were cut
from the core, washed with 0.1% (v/v) bleach and rinsed
twice with distilled water (Starkey and Rahme, 2009). Leaves
were placed into 14 cm diameter Petri dishes onto Whatman
paper soaked with 10 mM MgCl2 solution. Ten microlitres of
10 mM MgCl2 solution containing 104 or 106 cfu P. aeruginosa
were instilled into the midrib of the lettuce leaf at least 3 cm
apart from cutting edge. Petri dishes were sealed and incu-
bated at 37°C for up to 72 h. The progress of infection was
documented by protocol, i.e. visual recording and photo-
graphs taken always under identical conditions. Completely
infected leaves were marked. The size of the infected area at
the 44 h and 52 h time points was quantified by computer-
assisted planimetry.

Statistics

The outcome of the infection experiments in lettuce, insect
larvae and mice was compared by rank tests (Weber, 1967).

Fig. 11. Protocol of the acute murine airway
infection experiments with the P. aeruginosa
strains.
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Fig. S1. The figure shows the 210 boxplots of the frequency
distribution of syntenic SNPs, i.e. boxplots of haplotype
length, derived from the 210 paired comparisons of syntenic
SNPs in the panel of 20 sequenced strains and strain PAO1.
Fig. S2. The blocks indicate the levels [mean ± standard
deviation (SD), n = 6] of interleukin-1ß and keratinocyte-
derived cytokine in murine lungs 6 and 24 h after infection
with the different P. aeruginosa strains.
Fig. S3. The pie charts summarize the composition of the
accessory genome of F469 and B420 in terms of functional
class of protein (A) and the taxonomic position of the most
closely related orthologue (B).
Table S1. The table with the heading ‘The P. aeruginosa
pangenome’ lists the 13 527 distinct genes that were anno-
tated in the panel of PAO1 and the 20 sequenced strains. The
table with the heading ‘ORFs specific for single P. aeruginosa
strains’ lists all predicted strain-specific genes.

Table S2A. The tables list all detected sequence variations
for each of the 20 sequenced isolates. Because of size limi-
tations, the tables had to be allocated to two separate files.
Table_S2A: clones C40A, D421, F469, 0C2E, E429, 239A,
2C22, B420.
Table S2B. Table _S2B: clones F429, EA0A, 0812, 2C1A,
1BAE, 3C2A, EC2A, EC21, 843A, 0822, 149A, 478A, SNP
statistics.
Table S3. The table titled ‘Large blocks of identical
sequence shared by two isolates’ lists the length and genome
coordinates of all syntenic SNP contigs (‘haplotype blocks’)
longer than 20 kb.
Table S4. The table lists the infected area of lettuce leaves
52 h after infection with P. aeruginosa.
Table S5. The table lists all SNPs detected in the B420 and
F469 genomes that affect start or stop codons or cause
non-conservative amino acid substitutions compared to the
PAO1 reference.
Table S6. Genome features of F469 and B420 (genomic
islands, absent PAO1 loci, intragenic indels).

46 R. Hilker et al.
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Chapter 5 

Intraclonal genome diversity of the 

major P. aeruginosa clones C and PA14  

 

5.1 Background 

As we described in Chapter 4 P. aeruginosa is a ubiquitous environmental organism which can 

be found in diverse ecological niches. Moreover, this bacterium is an opportunistic pathogen 

capable of infecting plants, animals and humans. As a human opportunistic pathogen, P. 

aeruginosa has become one of the leading causes of mortality among Cystic Fibrosis patients 

as well as one of the main causes of hospital-associated pneumonia. Its ecological adaptability 

is based on a broad genetic repertoire and phenotypic adaptation. In Chapter 4 we already 

demonstrated that the P. aeruginosa pangenome is made up of a core genome of about 4,000 

genes common to all P. aeruginosa, a flexible accessory genome of 10,000 genes and ten 

thousands of genes only present in a few strains81. This genetic variability provides different 

grades of virulence, from moderately to highly virulent strains.  

Clones C and PA14 are the worldwide most abundant clonal complexes in the P. aeruginosa 

population.   

Reference strain PA14 is a highly virulent, its genome published in 2004 contains two 

pathogenicity islands which carry several genes implicated in virulence82-84. 

Clone C strains infect patients worldwide, it has been found in the clinical as well as aquatic 

environments85-87. 

 

5.2 About the manuscript 

In the manuscript intraclonal genome diversity was studied in hundred isolates of the 

predominant P. aeruginosa clones C and PA14. They have been selected from the 

environment, and from both acute and chronic infections.  

The analysis of the core and accessory genome revealed a highly conserved core genome and 

a highly variable accessory genome within the clone.  
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In order to evaluate the impact of recombination processes in Clone C and Clone PA14 the 

novel method described in Chapter one was applied. The length of syntenic segments of both 

clones was calculated. The results show that large blocks of identical sequences are shared 

within the clone. The median size of shared blocks was 99 kb in clone C and 163 kb in clone 

PA14. Haplotypes were used to visualize the relatedness of strains in a split-tree. 

 

Author’s contribution. 

Sebastian Fischer and Nina Cramer conducted the study. 

I performed the intraclonal recombination analysis of P. aeruginosa clones C and PA14 

as well as the graphs and tables describing the recombination process. 

For Tables and Supplementary material, please refer to the DVD attached to the thesis. 
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Summary 

Bacterial populations differentiate at the subspecies level into clonal complexes. Intraclonal 

genome diversity was studied in hundred isolates of two dominant Pseudomonas aeruginosa 

clones collected from the inanimate environment, acute and chronic infections. The core 

genome was highly conserved among clone members with a sequence diversity of 10-6, but the 

composition of the accessory genome was as variable within the clone as between unrelated 

clones and each strain carried a large cargo of unique genes. Within-clone genome diversity 

translated into up to 10,000-fold different rates of growth and persistence in clonal communities 

demonstrating that few genomic differences among natural isolates are sufficient to generate 

large gradients of competitive fitness.  
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Introduction 

Within a bacterial species the individual strains typically segregate into distinct clonal complexes 

that share more genetic and phenotypic features among themselves than with clonally unrelated 

strains (Robinson et al., 2010). Correspondingly, genome diversity is significantly lower within 

clones than between clones. Here we report on the intraclonal genome diversity of the two most 

common clones in the global population of the opportunistic pathogen Pseudomonas 

aeruginosa (Wiehlmann et al., 2007). 

P. aeruginosa is a ubiquitous and metabolically versatile Gram-negative bacterium that thrives 

in soil and aquatic habitats and colonizes the animate surfaces of plants, animals and humans 

(Ramos et al., 2004-2015). P. aeruginosa has become one of the most common causative 

agents of acute or chronic infections in predisposed or immunocompromised hosts worldwide 

(American Thoracic Society, 2005). Nosocomial infections are associated with substantial 

morbidity and mortality, for example, P. aeruginosa pneumonia and sepsis have a 20% – 60% 

lethality (American Thoracic Society, 2005). 

The success of P. aeruginosa as a cosmopolitan aquatic bacterium and opportunistic pathogen 

is based on its broad genetic repertoire. Its pangenome consists of a core of about 4,000 genes 

common to all P. aeruginosa, a flexible accessory genome of 10,000 genes and at least a 

further hundred thousand genes only present in a few clones or strains (Hilker et al., 2015). We 

have selected 100 isolates of the predominant P. aeruginosa clones C and PA14 from the 

inanimate environment, acute and chronic infections to study general features of intraclonal 

genome variation, i.e. the conservation and motility of core and accessory genome, the nature 

and frequency of sequence variation and mutation and the gradient of fitness to grow and to 

persist within a community of clonal strains. 

Results 

The NN2 clone C genome 

Clone C is the most abundant clone in the worldwide P. aeruginosa population (Römling et al., 

1994; Wiehlmann et al., 2007). Completely sequenced P. aeruginosa genomes are already 

available for several clones but not clone C. Hence we decided to completely sequence a 

phenotypically characterized clone C strain by DNA- and RNA-seq. The cystic fibrosis (CF) 

isolate NN2 was selected as the reference strain for clone C because strain NN2 was the first P. 

aeruginosa clone C isolate in a P. aeruginosa naive CF subject and its subsequent genomic 

microevolution in the CF host for the next 25 years is known (Cramer et al., 2011). Moreover, 

phenotypic traits of morphotype, motility, virulence, fitness (Cramer et al., 2011), a physical 

genome map (Schmidt et al., 1996) and the sequence of genomic islands (Larbig et al., 2002; 

Klockgether et al., 2004) have been investigated before.  
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The 6,902,967 bp large NN2 genome encodes 6,601 open reading frames and at least 557 non-

coding RNAs (Fig 1a, Table 1, Table S1). Strain NN2 shares 5,379 orthologs with reference 

strain PAO1 and harbours a repertoire of 48 islands in its accessory genome (Klockgether et al., 

2011). The majority of the 1,223 non-PAO1 ORFs encode proteins of unknown function 

indicating that NN2 carries a large yet unexplored set of clone- or strain-specific genes. Reliably 

annotated non-PAO1 ORFs code for elements of horizontal gene transfer, maintenance and 

defense of genomic integrity, enzymes, transcriptional regulators and heavy metal resistance 

proteins. Instructive examples are multiple copies of DNA repair genes or condensins not yet 

reported in P. aeruginosa that assist in the correct folding of the chromosome (Badrinarayanan 

et al., 2012; She et al., 2013). These extra features may confer clone-specific fitness traits to 

clone C so that it could become the most abundant clone in both environmental and disease 

habitats (Wiehlmann et al., 2007). 

The presence of non-coding (nc) RNAs was explored by RNA-seq of the transcriptome profiles 

of planktonic NN2 bacteria grown in fermenters in nutrient-rich tryptic soy broth until mid-

exponential or early stationary phase, respectively. Besides known intergenic ncRNAs (Gómez-

Lozano et al., 2012) we detected further 39 intergenic and – for the first time – 288 intragenic 

ncRNAs in the NN2 transcriptomes (Table S1). The intragenic ncRNAs consist of a small 

population of short 51 – 87 nt transcripts (n = 46, median 66 nt) and a larger population with a 

Gaussian distribution of transcript length (n = 242, range 92 – 1034 nt, median 257 nt). Two to 

four ncRNAs were found within 42 operons and 28 gene loci. Intragenic ncRNAs were 

overrepresented in genes encoding elements of motility, metabolic enzymes and DNA-

associated processes and underrepresented among transcriptional regulators.  

The transcriptome data also uncovered the position of the transcriptional start sites of NN2 

mRNA transcripts (Table S2). Compared to the PA14 transcriptome (Wurtzel et al., 2012), strain 

NN2 synthesized fewer leaderless transcripts, but a larger portion of short 5’-UTRs of 10 – 17 

bp in length. The length distribution was indistinguishable between the two strains for 5’-UTRs 

longer than 33 bp that made up 60 % of expressed genes (Fig 1b). The 250 bp region upstream 

of these genes is enriched for tetranucleotides with low base-pair stacking energy (Fig 1c) 

consistent with its role to initiate transcription from single-stranded DNA.  

Genome diversity of clone C and clone PA14 strains 

Having complete genome sequences of the reference strains PA14 (Lee et al., 2006) and NN2 

at hand (this work), we next explored the intraclonal diversity of these two major clones in the P. 

aeruginosa population (Wiehlmann et al., 2007) by genome sequencing of 57 clone C and 42 

clone PA14 isolates. The spatiotemporally unrelated strains were isolated during the last 30 

years from the aquatic environment, acute infections or chronic airway infections in individuals 

with CF or chronic obstructive pulmonary disease (COPD) (Table S3). 
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Clonal conservation of the chromosomal frame 

We calculated the length of syntenic segments with 100% sequence identity between pairs of 

either clone C, clone PA14 or clonally unrelated strains (Hilker et al., 2015). The completely 

sequenced NN2, PA14 and PAO1 genomes were taken as reference. Fig 2a shows the 

normalized frequency distribution of the length of fragments with identical sequence. Shared 

segments with absolute sequence identity, commonly called ‘haplotypes’ in case of diploid 

genomes, were short with a median size of 100 nucleotides if pairs of unrelated clones were 

compared (Hilker et al., 2015). In contrast, when either two clone C or two clone PA14 strains 

were compared, they shared large blocks of identical sequence with a median size of 99 kb 

(clone C) or 163 kb (clone PA14). Thus haplotypes are 1000-fold longer within a clonal complex 

than between unrelated clones. The chromosomal frame is conserved among members of a 

clonal complex, and in only a few cases the gene contig was disrupted by larger deletions (Fig 

2b). Conversely, shared haplotypes between unrelated clonal complexes are smaller than the 

average gene length suggesting an unrestricted gene flow in the P. aeruginosa population by 

recombination.  

Next, the haplotypes were used to visualize the relatedness of strains in a split-tree (Puigbò et 

al., 2012) (Fig. 3a, 3b). Tree topology is similar for the two clones. The majority of strains form a 

star-like structure of closely related independent singletons. Five (C) and six strains (PA14) are 

distant outliers. The preponderance of singletons suggests that most isolates of the clonal 

complex diverged from a common ancestor by few independent events. 

Intraclonal diversity of core and accessory genome  

The median intraclonal sequence diversity at the single nucleotide (SNP) level was found to be 

0.372‰ (range 0.002 ‰ - 0.789 ‰) in clone C and 0.024 ‰ (range 0.008 ‰ - 0.973 ‰) in clone 

PA14 strains (Table 2). Most sequence diversity is caused by genomic islands (GI) and a few 

regions of genome plasticity (RGPs) of the accessory genome (Fig. 3c, 3d). If we only 

considered the core genome common to all P. aeruginosa the sequence diversity was 

calculated to be 8 x 10-6 for clone C and 2 x 10-5 for clone PA14 which is more than hundred-fold 

lower than the sequence diversity among unrelated clones (Hilker et al., 2015). In other words, 

the core genome is highly conserved in a clonal complex and differs by just a few dozen SNPs 

from one strain to another. 

Intraclonal diversity was higher in the accessory genome not only in terms of sequence 

diversity, but also – and more importantly – in terms of the repertoire of GIs and RGPs of the 

individual strains. The composition of the accessory genome was nearly as variable among 

clone C or clone PA14 strains as between unrelated clones (Fig 4c). Figures 4a, 4b and supp. 

Figures 3 and 4 visualize the combinatorial composition of the accessory genome. The 

composition of the accessory genome segregated for 26 of the 100 isolates with spatiotemporal 
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origin, i.e. three pairs, five trios and one quintet were sampled each within a 3-year time period 

in a geographic area approximately equivalent to the size of Switzerland.   

The highest sequence diversity was observed in the mobile integrative and conjugative 

elements (ICE) of the types pKLC102, PAGI-2 and PAPI-1 which co-exist as extrachromosomal 

elements and spread across species and genus barriers by horizontal transfer (Qiu et al., 2006; 

Klockgether et al., 2007; Pradervand et al., 2014). Consistent with their access to a large pool of 

proteobacterial hosts more SNPs were fixed in these mobile ICEs than in any other GI or RGP 

of the clone C and PA14 genomes. When we removed the SNPs located in these three ICEs 

from the data set, the SNP statistics of the two clones converged indicating that similar 

mechanisms of mutation and repair exist in C and PA14 (Table 2). 

Intraclonal purifying selection of SNPs 

Next, we examined the ratio dS/dN of synonymous to non-synonymous substitutions in the 

coding region of the 100 clone C and PA14 strains. The proportion of synonymous substitutions 

was higher in all strains than the expected value dS/dN = 2.9/9.1 of random mutation, but two 

groups could be clearly distinguished (Fig 3e). In the larger cluster of 70 strains the 

overrepresentation of synonymous substitutions was within the upper confidence interval of the 

expected value, but in all other strains including those with the largest intraclonal sequence 

diversity the portion of synonymous SNPs increased even further with the total number of 

SNPs. The logarithmic regression line also properly described the dS/dN ratio of clones other 

than C or PA14. These data give a hint on the evolution of coding genes in P. aeruginosa. 

When we compare intraclonal sequence diversity against a clonal reference genome, neutral 

substitutions are more likely to be fixed than amino acid substitutions. This trend of purifying 

selection against non-synonymous substitutions increases with the total number of SNPs until a 

dS / dN ratio of about four is reached that is typical for interclonal sequence diversity between 

unrelated clonal complexes.  

The comparatively higher proportion of amino acid substitutions within as opposed to between 

clonal complexes also showed up in divergent frequencies of the type of change (P < 10-6) and 

the functional category of the affected protein (Table 3, Fig 3f). This finding is plausible in the 

context of the divergent time scales of the evolution of the P. aeruginosa core genome and its 

clonal complexes. The few mostly clade-specific non-synonymous mutations in a clonal 

complex primarily affect proteins involved in bacterial communication with its environment which 

indicates their habitat-related emergence in a recent ancestor at the time scale of days to 

decades. Conversely, the retained protein variants of the core genome are the result of purifying 

selection over millions of years. 

Intraclonal hot spots of mutation 
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Next, we searched for hotspots of mutations in the core genome of the 100 strains (Table S4). 

Besides numerous phage and plasmid-derived proteins found in both clones, the heavy metal 

ion efflux protein CusA, the cyclic-di-GMP phosphodiesterase BifA (Kuchma et al., 2007) and 

the key regulator of quorum sensing LasR (Williams et al., 2009) were identified in clone C as 

the targets for recurrent non-conservative amino acid substitutions some of which should modify 

structure and/or function. For example, in the case of LasR the amino acid exchanges include 

the helix-breaking incorporation of a proline which either affects conserved positions in the 

alpha helices 8 and 10 or are located in the binding pocket of the homoserine lactone 

autoinducer (Bottomley et al., 2007). 

Alternatively to this search for genes with numerous amino acid changes, the genomes were 

scanned for segments with significantly elevated SNP rates (FDR < 0.05). The clone C strain 

panel carried twelve hot spots of mutations ten of which affecting intergenic regions or phage- 

and plasmid related genes (Table S5). The two genes in the core genome were the 

transcriptional regulator PA2020 and again lasR. Of the 60 segments found in the PA14 strains, 

44 were located in the core and 16 in the accessory genome. Hot spots of mutations were 

predominantly phage- or plasmid-related genes and functionally to date uncharacterized open 

reading frames. Strain PT2 had accumulated almost all SNPs found in the 22 genes flanking 

RGP31 suggesting that the SNPs had been acquired from another clone by recombination. In 

contrast to this singular case, numerous strains of the PA14 clone harboured SNPs in the three 

hotspots of mutation of functionally characterized genes, i.e. pchF, rocs2 and pelA indicating 

diversifying selection. Their gene products are involved in the communication of P. aeruginosa 

with its environment. PchF contributes to the non-ribosomal biosynthesis of the siderophore 

pyochelin (Patel et al., 2001), the transcriptional sensor RocS2 controls the biogenesis of CupC 

fimbriae and multidrug transport (Sivaneson et al., 2011) and PelA deacetylates the Pel 

exopolysaccharide which is essential for biofilm formation (Colvin et al., 2013). 

Strain-specific gene repertoire 

The strain-specific acquisition of genes could generate gain-of-function traits that modulate the 

fitness, lifestyle and metabolic competence of the clonal complex. And indeed, the provision of 

extra genes to the individual strain was found to be substantial in both the clone C and the clone 

PA14 complex (Table S6). An average PA14 or C strain had taken up 170 and 103 genes, 

respectively (P < 0.001 for the comparison PA14 vs. C). The majority of closest orthologs was 

identified in other P. aeruginosa clones or other members of the Pseudomonas genus (Fig. 4d). 

Phylogenetically more distant taxa contributed to the residual 20%.  

Table 3 summarizes the total repertoire of strain-specific genes in the two clonal complexes 

sorted by functional category. Genes related to mobile genetic elements like phage or plasmids 

and hypotheticals of yet unknown function were significantly overrepresented among the strain-

specific genes. This finding was expected because phages, transposons and plasmids are the 
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common vehicles to provide genes to an individual strain of a clonal complex by horizontal gene 

transfer. Conversely, genes that encode elements of transcription or of intermediary metabolism 

were rarely or not identified among the strain-specific genes indicating that the genetic 

repertoire of the core genome is essential and comprehensive to cope with the basic requisites 

of cell growth and metabolism of P. aeruginosa (Table 3). However, we noted a differential 

repertoire of genes promoting the metabolic competence of the bacteria to metabolize 

substrate. The clone PA14 strains harboured a larger number of genes involved in amino acid 

or fatty acid metabolism whereas the clone C strains had a larger genetic repertoire for 

carbohydrate metabolism (Table 3). It is textbook knowledge based on studies on a few 

reference strains like PAO1 that P. aeruginosa prefers amino acids and fatty acids as carbon 

source of intermediary and energy metabolism (‘catabolite repression control’) (Linares et al., 

2010). Our data indicates that the repression of the uptake and catabolism of sugars may not 

apply to all P. aeruginosa and that some clonal lineages like the most common clone C may 

compensate the core genome-predetermined limitations in the utilization of sugars by the 

horizontal acquisition of genes of carbohydrate metabolism or by mutation of key regulators the 

latter having been reported for P. aeruginosa residing in CF lungs (Silo-Suh et al., 2005). 

Intraclonal fitness  

The preceding section describes intraclonal diversity in terms of the genomic make-up. Next we 

wanted to explore how intraclonal genome variation translates into differences in fitness among 

the members of a clonal complex. To accomplish this goal, sets of clone C or clone PA14 

strains were grown together in planktonic culture. 

To avoid the trivial outcome that fitness is governed by the individual proficiency of a strain to 

produce bactericidal pyocins, the weapon to kill other P. aeruginosa, and the corresponding 

neutralizing antitoxin (Michel-Briand et al., 2002), each strain was tested in its profile of 

production of and susceptibility to pyocins. All 57 clone C and 42 PA14 strains shared one 

clone-specific pyocin locus with each other and in addition the PA14 genomes differed in the 

presence or absence of two further pyocin operons. Unexpectedly the genotype-phenotype 

correlation was not stringent. The strain-specific production of pyocins and antitoxins was 

variable, and thus finally the largest subgroups of pyocin-tolerant strains consisted of just 10 

clone PA14 and 32 clone C strains. These panels of strains each of which adjusted to the same 

optical density in the inoculum were grown for 48 h in either a mineral minimal medium or a 

nutrient-rich LB medium. The percentage of each strain in the sample at time points 0 and 48 h 

was determined by shotgun sequencing of the clone C or clone PA14 metagenomes and 

subsequent evaluation of the frequency distribution of single nucleotide sequence variants 

(Table S7). The a posteriori sequence analysis taught us that the surrogate parameter ‘optical 

density’ had significantly over- or underestimated the number of bacteria for three or eight 

strains, respectively.  
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Fig 5 depicts the fold change of the contribution of individual strains to the community after two 

and five days of co-culturing. The change of the relative abundance of individual strains covered 

a broad range from a 1,000-fold depletion to a more than tenfold enrichment in mineral medium 

as well as in LB broth in both the clone C and clone PA14 communities whereby for most 

strains their portion was not affected by the shift from exponential to stationary growth. Of the 

eight and eleven strains which were the most or least dominant strains under the various 

conditions, single clone C and PA14 isolates were consistently highly and two C and PA14 

strain pairs consistently lowly abundant in both media. Winners and losers were examined for 

peculiar genomic features. The clone C winners were endowed with rare amino acid 

substitutions or frame-shifts in key regulators of lifestyle (LadS, CbrAB, several strains), extra 

weapons such as a lytic phage (110D4) or plasmid (MCF747) or extra copies of stringent 

response elements (81P29PA) (Table S6). The worst growing clone C strains exhibited non-

conservative amino acid changes in enzymes involved in DNA supercoiling, LPS biosynthesis 

(WbpM, ArnA) or sensing of environmental cues (WspR). Of the four losers within the clone 

PA14 panel, two strains (31, 106120) shared a variant of the major genomic island PAPI-1, but 

otherwise each strain exhibited a broad spectrum of individual non-synonymous SNPs. The two 

clone PA14 winners were characterized by the highest similarity of its genome to the strain 

PA14 blueprint (CF1) or the largest accessory repertoire of transcriptional regulators, NADPH-

dependent oxidoreductases and heavy metal ion efflux systems (39115), respectively. In 

summary, in accordance with the star-like structure of the dendrogram (Fig. 3a, 3b) the winners 

and losers did not share a group-specific repertoire of SNPs or genes, but rather carried 

individual genetic elements that governed their fitness to grow and to persist in the presence of 

other members of the clone. In particular, no association of fitness with habitat or geographic 

origin was observed. 

Discussion 

This first extensive study of intraclonal genome diversity of a cosmopolitan bacterium revealed a 

highly conserved core genome and a highly versatile accessory genome of its most common 

clonal complexes. P. aeruginosa is an ubiquitous microorganism that is equipped with broad 

nutritional capabilities, stress tolerance and an arsenal of virulence effectors (Ramos et al., 

2004 – 2015). Members of the dominant clones C and PA14 have been isolated worldwide from 

soil and aquatic habitats and the animate surfaces of plants, animals and humans (Wiehlmann 

et al., 2007; Cramer et al., 2012). For our study, we selected isolates from the environment and 

from acute and chronic human infections. Unexpectedly the origin of the strain was not 

predictive of whether it was fitter than its clonal peers to grow and to persist in nutrient-rich or 

nutrient-poor planktonic cultures. Within the clonal community freshwater isolates had no 

collective advantage to outcompete clinical isolates in mineral medium, and conversely the 

isolates that were retrieved from chronically infected airways of subjects with COPD or cystic 

fibrosis were together not more proficient than the environmental strains at growing under 
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eutrophic conditions. This data demonstrates that it is the evolutionary history of the individual 

clade rather than the adaptation to the most recent habitat that determined the relative fitness of 

a strain within its clonal complex. Starting with approximately the same number of bacteria per 

strain in our competition, the fraction of strains ranged by up to 10,000-fold after just five days of 

planktonic co-culturing. Each strain was equipped with an individual set of genomic islands and 

RGPs which encode one hundred or more unique genes not shared with any other clone mate. 

The variable composition of the accessory genome thus strongly modified the fitness of the 

individual strain to compete with other clone members.  

Lateral gene transfer turned out to be the driving force of intraclonal differentiation. On the 

contrary, the core genome with its sequence diversity of about 10-6 was virtually identical among 

members of the clone C or clone PA14 communities irrespective of their spatiotemporal origin. 

The few SNPs in the core genome were mostly strain-specific and the de novo coding variants 

were subject to purifying selection. In conclusion, the two dominant worldwide distributed P. 

aeruginosa clones are probably so successful at colonizing all aquatic habitats and mucosal 

surfaces on earth because their genome combines an almost invariant core with the flexible 

gain and loss of genetic elements that spread by horizontal transfer.  

 

Experimental procedures 

Strains. Specimens from human hosts were plated on blood, chocolate and MacConkey agar 

plates. An isolate was identified as P. aeruginosa on the basis of colony morphology, absence 

of lactose fermentation, presence of oxidase, growth at 42°C and the API20 NE system 

(BioMerieux, Nürtingen, Germany). P. aeruginosa was isolated from inanimate habitats by 

filtering of water samples (Selezska et al., 2012). Filters were placed on agar plates with 

Pseudomonas-selective medium (OXOID)(Pirnay et al., 2005) and incubated for 36 h at 37°C. 

Putative P. aeruginosa colonies were subcultured on the selective medium and typed by P. 

aeruginosa specific PCR (De Vos et al., 1997). Subcultures of P. aeruginosa isolates were 

stored at –80°C in LB broth supplemented with 17% (v/v) glycerol (Cramer et al., 2012) Strains 

were genotyped by a custom-made microarray (Wiehlmann et al., 2007) prior to genome 

sequencing.  

Culture media. Bacteria were grown in either M9 medium (0.681 g/L Na2HPO4, 3 g/L KH2PO4, 

0.05 g/L NaCl, 0.1 g/L NH4Cl, 0.1 g/L MgSO4, 0.01 mM FeSO4, 30 mM sodium succinate), liquid 

LB, tryptic soy broth or on solid LB agar plates.  

Batch culture fermentation. For RNA-seq. experiments bacteria were grown in a BIOSTAT B 

reactor (Sartorius, Göttingen, Germany). P. aeruginosa NN2 was precultured with an initial 

optical density of 0.225 (550 nm) in 50 mL broth for 1 h at 37°C with shaking at 125 rpm. 1x107 

cfu thereof were inoculated into 1.5 L broth with 750 µL antifoam (Struktol). Bacteria were grown 
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at 37°C in batch culture at constant pH (7.0), agitation (400 rpm) and aeration (compressed air 

0.3L/min). Growth was monitored offline by OD and CFU/mL and online by pO2 and redox 

status. For RNA extraction, three samples were harvested in parallel at mid exponential and 

early stationary phase (determined by pO2). 

Assessment of pyocin production. Groups of clone C and PA14 strains were assembled 

based on the criterion of shared genomic pyocin loci. Each group member was grown overnight 

in LB broth at 37°C with shaking (150 rpm). The next morning 2.5 ml aliquots of each group 

member were mixed with fresh medium in one 100 ml flask and incubated for a further 24 h at 

37°C and 150 rpm. Then the bacteria were precipitated by centrifugation and the supernatant 

was concentrated to half of its initial volume in a centrifugal evaporator. Agar plates with dried 

bacterial lawns of 100 µl overnight cultures of all single clone C or clone PA14 strains were 

inoculated with 40 µl drops of concentrated supernatants prepared from the various bacterial 

mixtures and dried. After overnight incubation at 37°C the plates were examined for halos 

indicating the inhibition of bacterial growth by the pyocin-containing supernatant. Thirty-three 

clone C and ten clone PA14 strains that showed no mutual inhibition of growth were selected for 

the competitive fitness experiments. 

Growth competition experiments. LB agar plates were inoculated in parallel with loops of 

frozen glycerol stocks of different clone PA14 or clone C strains and incubated overnight at 

37°C. Flasks with 5 ml LB broth were inoculated in parallel with a loop of bacterial lawn taken 

from one plate and incubated for the following 8 hours at 37°C with shaking. Aliquots of each 

clone PA14 or clone C strain were transferred into LB or M9 medium adjusted to a final OD578 = 

0.1 and distributed into six technical replicates. Bacteria were grown aerobically in 25 ml flasks 

at 37°C with shaking (150 rpm). After 12, 24, 36 and 48 h the bacterial mixtures were inoculated 

into fresh media (final OD578 = 0.1). Samples were taken at time points 0, 48 and 120 h. 

Preparation of DNA or RNA. Genomic DNA was isolated from P. aeruginosa according to a 

protocol optimized for Gram-negative bacteria (Ausubel et al., 1994). Total RNA (>18 nt) was 

extracted from 5 mL bacterial culture by using RNAprotect Bacteria Reagent and the RNeasy 

Midi Kit (Qiagen) according to manufacturer’s instructions yielding high-quality RNA samples 

with a RNA integrity number of 7.6 or higher in the Bioanalyzer (Agilent, Bioanalyzer 2100 

expert). Samples of 5 µg total RNA were treated with DNaseI to eliminate any residual DNA and 

then processed with the RiboZero Kit for Gram-negative bacteria (Metabion) to remove 

ribosomal RNA. RiboZero treated RNA was recovered by ethanol precipitation and the pellet 

was dissolved in 12 µL H2O. 

Sequencing. In case of the NN2 genome project, tagged paired-end and 3 kb mate pair 

libraries were prepared following the manufacturer's instructions and were sequenced on an 

Illumina Genome Analyzer II by GATC-Biotech (Constance, Germany). Furthermore single-end 

read libraries were prepared following the manufacturer's instructions and were sequenced on a 
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Roche 454 GS-FLX+ system. For RNAseq of strain NN2, strand-specific libraries were prepared 

from the RiboZero treated RNA samples with or without pretreatment with Terminator 5´-

Phosphate-Dependent Exonuclease (TEX) following the ‘TruSeq Stranded mRNA LT Sample 

Prep Kit’ protocol (Illumina) and then sequenced on a HiSeq instrument.  

All other genome and metagenome sequencing was executed in-house with a SOLiD5500 

instrument. The manufacturer’s standard protocol for fragment library generation was modified 

to overcome the substantial underrepresentation of sequences of a GC-content of 60% or more. 

One µg of bacterial DNA was sheared in a Covaris S2 system. End repair and size selection to 

an average of 200 bp fragment size were performed according to standard protocols (Fragment 

library generation, Life technologies (LT)/Thermo), but the next steps were modified. The dA 

tailing reaction was performed in ¼ of the standard volume with Stratec Taq Polymerase 

instead of the LT- dA tailing enzyme (DNA 9 µl; 5x Buffer (LT) 2.5µl, 10mM dATP 0.25 µl, 

Stratec Taq Polymerase 1.25 µl; 30 min; 68°C). The incubation conditions of the subsequent 

ligation were altered to increase life time and performance of the T4 ligase (dA-tailed reaction 

mix 13 µl; 5x Buffer (LT) 0.75 µl; each adaptor (LT, 1:20 diluted) 0.5 µl; 10mM dNTP 0.3 µl; T4 

Ligase (NebNext, NEB) 0.8 µl; water 0.1µl; 12 h; 12°C; followed by nick translation (20 min; 

72°C)). The generated fragment library was purified, amplified (5 cycles) and then bound to 

beads (EZBead System (LT); E120 scale, P2 post enrichment 17%) according to LT standard 

protocols. Sequencing was performed on a SOLiD 5500XL system (LT) with 75 bp read length 

and implemented ECC (Exact call chemistry (LT)). The produced sequencing reads were 

corrected using the SOLiD Accuracy Enhancer Tool (SAET).   

Assembly of a single contig NN2 genome. The de novo assembly of the draft NN2 genome 

was started by first assembling the 454 sequencing data using the Newbler assembler (version 

2.8) (Margulies et al., 2005). The minimum contig length was set to 150 bases and the internal 

read quality trimming of Newbler was used. The resulting scaffolds were combined and 

extended with the Illumina paired-end and 3kb mate pair data using the software SSPACE 

(Boetzer et al., 2011) with default parameters. The final scaffolds were aligned to the reference 

strain PAO1 using the contig arrangement software r2cat (Husemann et al., 2010). 

Gaps with the predicted size of zero bp between two contigs were checked by performing a 

local alignment of all Illumina reads of this region with the short read aligner BWA (Li et al., 

2009). Contigs with correct prediction and overlapping contigs were merged. The remaining 

gaps but two were closed by Sanger sequencing of PCR-amplified gene fragments (Goldstar 

polymerase (Eurogentec), fragments 250 – 400 bp, 5 cycles with elongation time 60 s). Of the 

final two gaps, one gap was closed by comparison with the known sequence of PAGI-2 (Larbig 

et al., 2002). The other gap was located in a region of multiple almost identical direct repeats. It 

was closed by recurrent searches for Illumina reads that linked the ends of the stepwise 

growing contigs.  
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Annotation of the NN2 genome. Automatic annotation of the closed contig was performed 

using the RAST-server (Aziz et al., 2008). The subsequent manual curation employed the 

Artemis tool (Rutherford et al., 2000). Gene coordinates were adapted to the gene length of 

orthologs present by March 2012 in the Pseudomonas Genome Database (Winsor et al., 2011) 

and the ascribed function was edited where applicable by screening of the biomedical literature 

listed in the PubMed database until December 2014. Other ORFs that lacked an ortholog in the 

Pseudomonas database or that were first identified by RNA-seq data were annotated by a 

matching BLAST result. The annotation file was deposited in the EMBL/EBI archive, accession 

no. PREBJ5222.  

Transcriptional start sites (TSS) and non-coding RNAs (ncRNAs) were identified from the 

inspection of aligned cDNA reads with the genome viewer ReadXplorer (Hilker et al., 2014). The 

5' UTR peak in TEX-treated libraries guided the mapping of TTS. ncRNAs were detected by 

significantly elevated counts of read contigs within and between annotated ORFs. A ncRNA was 

only counted if the same profile of cDNA reads was observed in technical and biological 

replicates. 

Tetranucleotide usage in the NN2 genome. Tetranucleotide frequencies in the global NN2 

genome and in a 300 bp window stretching from 250 bp upstream to 50 bp downstream of the 

start codon were counted with the CLC genomics workbench 7.0 whereby in case of the latter 

only genes with a confirmed 5’UTR in the RNA-seq data set were considered. The 

observed counts were compared with the values if tetranucleotide frequency were only 

governed by mononucleotide content. The normalized difference between observed and 

predicted counts was visualized by color code for all 256 tetranucleotides sorted by base 

stacking energy (Baldi et al., 2000). 

Analysis of clone C and clone PA14 genomes. 

Alignment of SOLiD reads. Untrimmed SOLiD reads were aligned to the strains NN2 or PA14 

genomes by using the program NovoalignCS (www.novocraft.com) and the parameters  -F 

CSFASTAnQV -r Random -c 16 -o SAM to create sam-files. Bam files were created from the 

sam files with picard-tools 1.68. Duplicates were removed using the samtools command rmdup. 

Genomic islands (GIs) and regions of genome plasticity (RGPs). Single-end 75 bp SOLiD 

reads of clone C and PA14 isolates were aligned to a reference data set of known P. 

aeruginosa GIs and RGPs (Klockgether et al., 2011) using NovoalignCS. Uncovered reference 

regions were identified using the genomeCoverageBed utility from BEDTools (Quinlan et al., 

2010). Coverage percentages of GIs and RGPs were calculated for each strain using an in-

house Perl script. We noticed that the identified calculated sequence coverage was affected by 

the number of reads for each isolate. Therefore, the coverage percentages were normalized by 

dividing them by the probability P of covering a genome position with at least one read. 
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However, it was also desirable to determine which genomic islands and regions of genome 

plasticity are either absent of present in the selected isolates by either minimizing or amplifying 

coverage of partially covered features. For this purpose, inverse logit transformation was also 

applied to the coverage data. Genomic regions with values of 0.5 or greater were assigned as 

present. For pairwise comparison of strains, the absence or presence of a genomic region in 

both strains were scored with +1, whereas the presence of a genomic region in only one strain 

was scored with -1. Heatmaps were created using the gplots R package. 

Identification of strain-specific genes. All reads that did not align to the corresponding 

reference strain or the known GIs or RGPs were separated with samtools view -b -f 4 and de-

novo assembled with the program Velvet (Zerbino et al., 2008) with the k-mer sizes 27, 29, 31, 

33, 35, 37, 39, 41. For each strain the best assembly result based on a large n50 number and a 

maximal contig length was chosen for further processing. False positive results were excluded 

by mapping the contigs against reference strain, GIs and RGPs with the long read mapping 

program CUSHAW2 (Liu et al., 2012). The remaining contigs were analyzed by a local blastx 

search against all bacterial genomes deposited in the UniProt database with the parameters -m 

8 -e 1e-10 -a 8. To reduce the number of double entries, all hits with a sequence similarity of 

more than 90 % in at least 80 % of their sequence length were concatenated into one entry 

using an in-house script. 

SNPs. SNPs were called in a three-step process using samtools (Li et al., 2009) from the bam-

files. At first 'samtools mpileup' was performed with the options -g and -B (generate BCF output 

(genotype likelihoods); disable BAQ computation) followed by a filter step using 'bcftools view' 

with the options -c, -v, -g and -P (SNP calling (force -e); output potential variant sites only (force 

-c); call genotypes at variant sites (force -c); type of prior: full, cond2, flat [full]). The last step 

was the command `vcfutils.pl varFilter' to create the full SNP list of each strain without further 

parameters. From the full SNP-list all entries with a coverage of less than 4, a quality value 

below 50 and an allele frequency < 1 were removed. SNP-statistics were analyzed with the tool 

SnpEff 1.9.5 (Cingolani et al., 2009). Amino acid changes were grouped and analyzed 

according to the Dayhoff similarity index matrix, which describes the frequencies of amino acid 

substitutions between closely related proteins (Dayhoff, 1978). 

Small insertions and deletions (indels). Indel calls were made on the basis of the results of 

the alignment of SOLiD read datasets to the PA14 and NN2 reference genomes. Variant calls 

were extracted from the existing sam-files using SAMtools and filtered for calls flagged as 

indels. All positions displaying a coverage of less than six at the respective position or showing 

the wildtype sequence in more than 50 % of reads were removed. The remaining candidate 

positions were then examined by manual inspection of the local alignment using the Integrative 

Genome Viewer (IGV) (Thorvaldsdóttir et al., 2013). Indel calls were considered as not reliable 

if one or more of the following criteria were observed: a) indel position too close (within length of 

one read) to an uncovered region; b) locus covered below six for the majority of isolates; c) 
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positions covered only by read ends; d) wildtype and indel reads found for all isolates; e) 

inconsistent position of the indel flagged by the reads; f) dominant calls of wild-type sequence 

erroneously neglected in output because of further sequence variations in cis. If indel calls were 

confirmed for several strains, the alignment was checked for the whole data set in order to trace 

the spread of the indel in the clonal complex or to recognize a unique sequence variant or 

sequencing error in the reference strain. Indels were subsequently annotated with SnpEff 1.9.5 

to determine the affected genomic feature and potential frame-shifts in coding regions. Indels 

affecting protein coding genes were sorted by annotation class.  

Large deletions. The genomes of the clone C and clone PA14 strains were scanned for 

deletions in 1,000 bp sliding windows using the script rpkmforgenes.py (Ramsköld et al., 2009). 

Hits were verified by manual inspection with the Artemis genome browser. 

Length of syntenic fragments (‘haplotypes’). Two matrices were constructed that contained 

columns of all quality-controlled clone C or clone PA14 SNPs ordered by genome position in the 

reference genomes and rows of the 58 clone C or 42 clone PA14 isolates, respectively. The 

value 0 was assigned to nucleotides that match with the reference and the value 1 was 

assigned to the nucleotide substitution. Next, all 1653 and 861 possible combinations of two 

clone C or clone PA14 genomes were compared in their similarity of SNP pattern. Haplotypes 

were identified by counting successive matches of binary pattern until the first mismatch. The 

number N of syntenic SNPs was then inserted at each SNP position of the haplotype. For this 

purpose a second matrix of haplotypes was constructed that consisted of all SNP positions as 

columns, the paired comparisons as rows and the numbers of syntenic SNPs, i.e. the 

haplotypes, as entries. This matrix was used to extract the haplotypes of the paired 

comparisons and to convert SNP synteny into physical length. Automatic analysis was 

performed with in-house Perl scripts.  

Phylogenetic tree. SNPs with a map position in the NN2 or PA14 genomes were incorporated 

into the reference genome using the in-house script SequenceReplacer and concatenated to 

one file. The phylogenetic tree was created with the program Splitstree (Huson et al., 2006). 

Structure of ncRNAs. Predicted secondary structure and thermodynamic stability of ncRNA 

variants were compared with the ViennaRNA websuite (Gruber et al., 2008). 

Metagenome analysis. Competitive growth experiments were performed with pools of either 

clone C or clone PA14 strains. The percentage of the n individual strains in the sample was 

determined from SNP frequencies in the sequenced metagenomes. The data set allows to 

repetitively extract the composition of a clonal community of n strains by mass conservation law 

from 1. n linear equations of the cumulative frequency of strain-specific SNPs of the n strains; 2. 

 
 
 
  linear equations of the cumulative frequency of SNPs shared by two of the n strains; 3.  

 
 
  

linear equations of the cumulative frequency of SNPs shared by trios; …. and so forth until k. 
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  linear equations of the cumulative frequency of SNPs shared by k = half of the n strains. 

This set of   
 
 
  

    linear equations massively overdetermines the n unknowns, and 

consequently the abundance of strains in the pool can be calculated with high accuracy even 

though the coverage of reads at the individual genome positions of the SNPs may be poor. 

Since the phylogenetic tree of the clonal complexes showed a star-like structure, the practical 

evaluation focused on singletons and pairs as follows: The SOLiD reads were aligned to the 

NN2 and PA14 reference genomes using NovoalignCS. Pooled SNPs were identified using the 

GATK UnifiedGenotyper (McKenna et al., 2010) with the --sample_ploidy parameter set to the 

number of strains in the pooled samples. 
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Fig 1. The clone C NN2 genome. (a) Genome map. (b) Distribution of the length of the 5’-

untranslated region in the strain NN2 (grey) and strain PA14 genomes. (black). (c) Comparison 

of the tetranucleotide composition in the whole NN2 genome (left) and in the segment of 250 bp 

upstream to 50 bp downstream of the start codon of all genes with an experimentally identified 

transcriptional start site. 

Fig 2. Conservation of the core genome. (a) Normalized distribution of the length of 100% 

pairwise conserved sequence (‘haplotype’) in 58 clone C (n = 33,800 haplotypes), 42 clone 

PA14 (n = 9,510) and 20 clonally unrelated P. aeruginosa strains (n = 3,779,224). (b) Deletions 

in the core genome found in clone C (outer circle) and clone PA14 isolates (inner circle) from 

different habitats (full circle = chronic infection, open circle = acute infection, square = 

environment). 

Fig 3. Single nucleotide sequence diversity of the clonal complexes C (reference: strain 

NN2 genome) and PA14 (reference: strain PA14 genome). (a, b) SNP-based phylogenetic 

trees of the clonal complexes C (a) and PA14 (b). (c, d) Cumulative Kaplan-Meier-plots of the 

SNP frequency along the genomes of clone C isolates (c) (n = 57) and of clone PA14 isolates 

(d) (n=40 and separately the two outliers PT2 and 158). Regions with pronounced sequence 

diversity are indicated by RGP or ORF numbers. SNPs in RGPs marked with an asterisk were 

not incorporated because of their large number of SNPs. (e) Comparison of intra- vs. interclonal 

sequence diversity: Plot of the ratio of synonymous to non-synonymous SNPs (ds/dn) vs. the 

total number of SNPs per strain. Clone C, clone PA14 and clonally unrelated strains (reference: 

strain PAO1 genome) are differentiated by symbol. The dotted line indicates the expectancy 

value of random mutation. (f) Normalized frequency of amino acid replacements within and 

between clonal complexes sorted by occupancy of Dayhoff similarity index.  

Fig 4. Diversity of the accessory genome of the clonal complexes C and PA14. (a, b) The 

heatmap shows the presence (red) or absence (green) of genomic islands in (a) clone C and (b) 

clone PA14 isolates. Strains are arranged by the similarity of their repertoire applying 

hierarchical clustering with default parameters (R package). (c) Box-plot presentation of the 

similarity of the accessory genome within and between clonal complexes. For each strain a 

global score of relatedness was evaluated whereby the two strains were assessed of whether 

they were concordant (assigned value: + 1) or discordant (assigned value: - 1) for the presence 

or absence of each RGP or genomic island known from eight completely sequenced P. 

aeruginosa genomes. Please note the large overlap of scores of the intraclonal comparisons 

(C_C; PA14_PA14) with those of interclonal comparisons of 20 unrelated strains (20_20). (d) 

Origin of closest homologues of strain-specific genes.  

Fig 5. Results of the fitness experiments. Fitness experiments in LB (a, b, upper panel) and 

mineral medium (MM, c, d, lower panel) of 32 clone C (b, d, right panel) and 10 clone PA14 

strains (a, c, left panel). The figure displays the fold change of the contribution of individual 
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strains to the community after two and five days of co-culturing compared to the start of the 

experiment (open circle: isolate from acute human infection, closed circle: isolates from chronic 

infection, square: isolate from inanimate aquatic habitats). 

Supporting Information 

Supporting Text S1. The text describes the sequence diversity of ncRNAs and insertions, 

deletions and frame-shifts. 

Supporting Figures: 

Figure S1. SNPs in ncRNAs. (a) Kaplan-Meier-plots of the frequency distribution of ncRNA 

SNPs in the P. aeruginosa clone C and clone PA14 strain panels. (b) Histogram of the 

frequency of SNPs in individual ncRNAs in the P. aeruginosa clone C and clone PA14 strain 

panels.  

Figure S2. Indel Frequency in the strain panel. Frequency of small indels in the clone C (left) 

and clone PA14 (right) strain panels differentiated by habitat and their localization within 

intergenic region, genes of annotation classes 1 or 2 and 3 or4, respectively. 

Figure S3. Diversity of the RGPs of the accessory genome of the clone PA14 strains. The 

heatmap shows the presence (red) or absence (green) of RGPs in clone PA14 isolates. Strains 

are arranged by the similarity of their repertoire applying hierarchical clustering with default 

parameters (R package). 

Figure S4. Diversity of the RGPs of the accessory genome of the clone C strains. The 

heatmap shows the presence (red) or absence (green) of RGPs in clone C isolates. Strains are 

arranged by the similarity of their repertoire applying hierarchical clustering with default 

parameters (R package). 

 

Supporting Tables: 

Table S1. Annotation of the NN2 genome. The table lists the annotated ORFs of the NN2 

genome and yet undescribed ncRNAs. The table does not list ncRNAs first detected in P. 

aeruginosa PAO1 by RNAseq (Gómez-Lozano et al., 2012). 

Table S2. 5’-untranslated regions of the NN2 genome. . Map positions of the transcriptional 

start site and the corresponding downstream coordinates of the next gene being either a 

singleton or the first gene of an operon in the P. aeruginosa NN2 genome. Only those 

transcriptional start sites are listed which were covered by at least 30 reads in TEX RNA-seq of 

NN2 bacteria grown in a fermenter with TSB medium (see Experimental Procedures). 

Table S3. Origin and detailed SNP statistics of the investigated strains. The table lists the 

origin and isolation date of each strain and provides a detailed SNP statistics compared to the 

clonal reference (clone C: strain NN2, clone PA14: strain PA14). 

Table S4. Amino acid exchanges of the strains. The table shows all amino acid exchanges 

found in the clone C and clone PA14 strain panel. 
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Table S5. Hotspots of mutation in the genomes. The table shows all genes with a high 

mutation frequency within the strain panels and their affiliation to core or accessory genome. 

Table S6. Singular or shared genes that are absent in the reference genome and known 

RGPs. The table shows the additional genes of the strains. Each row lists (from left to right) the 

annotation and origin of the closest homologue, the strains harbouring the gene and up to ten 

more distant homologues, if applicable.  

Table S7. Results of the fitness experiments. The percentage of individual strains in the 

samples was determined as follows: DNA extracted from the samples was randomly sequenced 

by high-throughput sequencing. The percentage of individual strains was calculated from the 

ratio of reads covering the strain-specific SNPs (Specific reads) to the total number of reads 

covering these genome positions (Number of total reads). In accordance with the star-like 

dendrogram (Figure 3) most SNPs only occurred as singletons or pairs allowing a 

straightforward quantitation. Only SNPs were considered that occurred in five strains or less. 

Table S8. List of all SNPs in small RNAs. The table shows all SNPs located in ncRNAs 

detected in this work. The first base shows the reference sequence and the second one the 

SNP within the strain. 

Table S9. ncRNA SNP statistics. The table shows number and frequency of SNPs in the 

ncRNAs of the strain panel. 

Table S10. Stability of ncRNAs. The table shows in silico secondary structure and 

thermodynamic predictions of clone C and clone PA14 ncRNA SNP variants.  

Table S11. Large deletions in the strain panel. The table shows the size and map positions of 

deletions in clone C and clone PA14 genomes including information about the deleted genes. 

Table S12. Indels in the strain panel. The table shows for each strain the detected indels. 

Shared or strain specific indels are colored. 
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Chapter 6 

Filtration and normalization of 

sequencing read data in whole-

metagenome shotgun samples  

 

6.1 Background 

Next generation sequencing (NGS) has revolutionized and contributed significantly to expand 

our understanding of genomes. NGS has made affordable to sequence a whole metagenome 

sample and enable the identification and characterization of lowly abundant and unculturable 

bacteria or microbial communities within environmental samples. This technique is known as 

whole-metagenome shotgun (WMS) sequencing which has become an alternative to traditional 

16S rDNA microbiome analysis.  

WMS has significantly expanded our understanding of the diversity, composition and roles of the 

microbiome in different bacterial communities as well as in human health and diseases. 

However, deep coverage variations and sequencing errors, such as GC content bias, can skew 

the relative abundance of bacterial diversity within the sample.  GC content bias describes the 

proportion between fragments count and GC content found in sequencing data and it is 

considered not consistent between samples.  

Several studies already showed the effect of GC content bias on fragment coverage in Illumina 

GA technology 88, but little is known about the effect of GC content in SOLiD technology. In case 

of Illumina, it has been observed that the fragment coverage increases with GC content, making 

regions with high AT content more difficult to sequence.  

Another limitation using the WMS approach is the effect of horizontal genome transfer (HGT). 

HGT is an important phenomenon in prokaryotic evolution which enables the acquisition of new 

genes. Therefore, taxonomic assignment of sequences with horizontal gene transfer origin can 

generate overestimation of the bacterial abundances in specific loci of a single bacterial hit89. 

 

Finally, the normalization based on the lengths of the bacterial references genomes is also 

essential. In other words, large microbial genomes are more likely to be sequenced than small 
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genomes. 

Thus, new computational challenges in the analysis of data become extremely needed and 

established to achieve quality controls and correct estimations of bacterial abundance using 

high-throughput sequencing.  

 

6.2 About the paper 

In this work we describe an efficient approach for the filtration and normalization of next-

generation sequence data generated by SOLiD 5500xl technology, improving thereby accuracy 

in species identification and bacterial abundance estimation.  

SOLiD sequencing produces short reads out of 75 nucleotides in length which are trimmed to a 

minimum length of 45 nucleotides and 40 bases with at least Q>=20. Sequences which do not 

satisfy the quality control step are filtered out.  

Then our approach assigns each read to a specific reference genome, although, due to 

sequence similarity, reads can align to multiple genomes. In this case the reads were assigned 

to the lowest possible taxonomic level. 

To study the GC content effect we created a GC bias model which use non-linear regression. 

The data used to create the model was collected from an empirical pooled sample with equal 

amounts of seven bacteria covering a broad spectrum of GC content (from 33% to 71 % GC 

content) and sequenced using the SOLiD 5500xl technology.  

The model classified each read based on its GC content and the GC content of its hit (the 

bacterial reference genome to which it is assigned). 

For filtration of clustered reads which could belong to genomic islands we present two 

complementary methods. The first method is based on a single-sample t-test of the mean 

distances between the reads mapped to the same reference genome. The second method uses 

a Poisson model to estimate the genome size of the reference based on the distances among 

all reads mapped to it. The difference between the actual and estimated genome sizes allows 

us to conclude whether the read mapping locations are spread distantly enough so that the 

origin from a genomic island shared by the reference genome and further yet unknown 

genomes can be excluded.  

Finally, we perform a last step to normalize the data based on the genome length to which the 

sequence belongs to.  

 

Author’s contribution. 

The study was conducted by P. Chouvarine I was mainly involved in the first steps of the 

pipeline, i.e. trimming of sequences and quality filtering, as well as the alignments of 

sequences.  

For Tables, please refer to the DVD attached to the thesis. 
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ABSTRACT 

Ever-increasing affordability of next-generation sequencing makes whole-metagenome 

sequencing an attractive alternative to traditional 16S rDNA, RFLP, or culturing approaches to 

analysis of metagenomic samples. The advantage of whole-metagenome sequencing is that 

instead of analyzing a single 16S gene or other biomarkers it allows direct inference of the 

metabolic capacity and physiological features of the studied metagenome without reliance on 

the knowledge of genotypes and phenotypes of the members of the bacterial community. It also 

makes it possible to overcome problems of 16S rDNA sequencing, such as unknown copy 

number of the 16S gene and lack of sequence homology of the “universal” 16S primers to some 

of the target 16S genes. On the other hand, next-generation sequencing suffers from biases 

resulting in non-uniform coverage of the sequenced genomes, which, however, can be 

normalized. While there has been substantial research in normalization and filtration of read-

count data in such techniques as RNA-seq or Chip-seq, to our knowledge, this has not been the 

case for the newly developing field of whole-metagenome shotgun sequencing. In this paper we 

present a model of GC-bias affecting sequencing reads in metagenomic samples and filtration 

and normalization techniques necessary for accurate quantification of microbial organisms in 

such samples.  

INTRODUCTION 

Metagenomics is the study of microbial communities in their natural habitat without isolation or 

cultivation of individual species (1). The boom of next-generation sequencing technologies 

makes it affordable to sequence with high coverage a whole metagenome of an environmental 

sample. This technique is known as whole-metagenome shotgun (WMS) sequencing. It is an 

attractive alternative to traditional 16S rDNA, RFLP, or culturing approaches to metagenomic 

analysis, because the techniques based on biomarkers rather than whole-genome analysis can 

suffer from inaccuracies due to copy number variation or lack of homology between the primers 
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and their targets. Moreover, these biomarker-based techniques are unable to assess the 

collective metabolic potential or the community population genetics, while it is possible using the 

WMS sequencing (2, 3). In addition, the WMS sequencing approach allows estimation of fungi 

and viruses in the sample, which is not possible with the biomarker-based metagenomic 

techniques. 

The coverage of individual bacterial genomes comprising the metagenome will vary based 

on two factors: their abundance in the sample and sequencing artifacts, such as GC bias, 

fragmentation bias, the total amount of bacterial DNA sequenced, sequencing protocols, etc. 

Normalization of these biases can be used for correct estimation of bacterial abundance in the 

sample. Another pitfall in reporting bacterial abundance using the WMS approach is counting 

reads that are clustered only in a few loci of a single bacterial hit. Such reads are most likely 

located in genomic islands of horizontal transfer origin; therefore, such bacterial hits should be 

filtered out. Finally, lengths of the bacterial reference genomes also contribute to the likelihood 

of these genomes being sequenced, the same way that gene lengths affect the number of 

cDNA reads representing expression levels of these genes in an RNA-seq project (4). 

In this paper we provide an overview of filtration and normalization procedures meant to 

improve accuracy in estimation of bacterial abundances in WMS samples. These methods are 

aimed to either discard or classify each read in a metagenomic sample to a correct species for 

the species-level analysis or to a strain if a strain-specific resolution is desired. Each classified 

read is given a weight based on its GC content and the GC content of its hit (the bacterial 

genome to which it is assigned). Finally, the length of the hit is applied to normalize the GC-

weighted counts for accurate abundance estimation.    

In the Filtration Methods section, we present two complementary methods for filtration of 

clustered reads potentially mapped to genomic islands. The first method is based on a single-

sample t-test of the mean distances between the reads mapped to the same reference genome. 

The second method uses the Poisson model to estimate the genome size of the reference 

based on the distances among all reads mapped to it. The difference between the actual and 

estimated genome sizes allows us to conclude whether the read mapping locations are spread 

enough in order not to come from genomic islands incorporated into this reference genome. 

In the GC Normalization section, we present a GC bias model that was created using non-

linear regression from the empirical data collected by sequencing a pooled sample with equal 

amounts of seven bacteria with various GC contents using the SOLiD 5500xl technology. 

Similar models should be created for each sequencing platform as the GC biases are expected 

to vary for each of them (5). 

In the Other Considerations section, we compare species level- and strain level WMS 

approaches. Namely, we discuss dealing with reads mapping equally well to multiple locations 
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in the same or multiple genomes at the species level analysis. Bacterial load assessment and 

genome length normalization are also discussed. 

MATERIALS AND METHODS 

DNA library preparation 

Seven bacterial reference strains with different GC contents were obtained from the American 

Tissue Culture Collection or the in-house collection: Burkholderia cepacia (67% GC, ATCC 

25416), Escherichia coli (50% GC, ATCC 25922), Klebsiella pneumoniae (57% GC, ATCC 

10031), Nocardia farcinia (71% GC, MHH 442780), Pandorea apitsta (64.9% GC, RB-44), 

Staphylococcus aureus (33% GC, ATCC 25923), Streptococcus pneumonia (40% GC, ATCC 

49619). Bacteria were grown until exponential phase in LB broth. DNA was isolated from the 

bacteria with the DNeasy kit (QIAGEN) following the instructions of the manufacturer. Yield of 

double-stranded DNA was quantified with the Qubit spectrofluorimeter (Invitrogen). Aliquots of 

five ng of each bacterial DNA preparation were added to 315 ng human DNA in a total volume 

of 130 µl low TE-buffer (Life Technologies). 

Induced sputum was collected from subjects with cystic fibrosis during inhalation with 

aqueous hypertonic saline (6% v/v NaCl). The sputum sample was diluted 1:4 with phosphate-

buffered saline/2% (v/v) mercaptoethanol at 4°C and incubated under shaking for 2 h on ice. 

The specimen was centrifuged at 3,800 g for 15 min at 10°C. After removal of the supernatant, 

the pellet was dried and then dissolved in 10 ml distilled water for 15 min at 4°C. The 

suspension was again centrifuged (3,800 g, 15 min, 10°C), the precipitate was dissolved in 

distilled water for 15 min at 4°C, pelleted and the pellet was transferred into an Eppendorf tube 

for incubation with DNase I (0.42 mL  H2O + 50 µL RD buffer (QIAGEN) + 35 µL DNase I) at 

30°C for 90 min under shaking.  The suspension was added to 10 ml SE-buffer and washed 

three times with 10 mL SE each by precipitation (3,800 g, 15 min, 10°C). The pellet was 

dissolved in 0.5 mL SE in an Eppendorf tube and precipitated again (12,000 g, 10 min, 10°C). 

DNA was extracted from this pellet with the Nucleo Spin Tissue Kit (Macherey & Nagel) by 

following the hard-to-lyse-bacteria protocol and stored at 4°C in TE buffer at 4°C until use.  

Preparation of fragment libraries and sequencing were performed at the E120 scale 

according to the protocols provided by Thermo Life Technologies for SOLiD5500 instruments 

(generation of libraries: 

https://tools.lifetechnologies.com/content/sfs/manuals/4460960_5500_FragLibraryPrep_UG.pdf; 

emulsion PCR: Emulsifier, Amplifier 

http://tools.lifetechnologies.com/content/sfs/manuals/cms_102275.pdf; Enricher  

http://tools.lifetechnologies.com/content/sfs/manuals/cms_089261.pdf).  

 

https://webmail2.mh-hannover.de/exchweb/bin/redir.asp?URL=https://tools.lifetechnologies.com/content/sfs/manuals/4460960_5500_FragLibraryPrep_UG.pdf#_blank
https://webmail2.mh-hannover.de/exchweb/bin/redir.asp?URL=http://tools.lifetechnologies.com/content/sfs/manuals/cms_102275.pdf#_blank
https://webmail2.mh-hannover.de/exchweb/bin/redir.asp?URL=http://tools.lifetechnologies.com/content/sfs/manuals/cms_089261.pdf#_blank


Chapter 6. Filtration and normalization of sequencing read data in WMS samples 

 

82 
 

Analysis Dataflow 

The SOLiD reads of metagenomic samples are first trimmed to variable lengths (no shorter than 

45 bp) to have at least 40 bases with Q>=20.  The trimmed reads are checked for 

contamination by Homo sapiens DNA by aligning them against the “1000 Genomes” Homo 

sapiens reference, which includes contigs unassigned to chromosomes. The unaligned reads 

are corrected using SOLiD’s SAET utility, which increases the number of mapped reads by 40 - 

50% in genomes of size 1Kbp - 200Mbp with coverage 10-4000x and read length 25 - 75bp 

(according to the manufacturer). The corrected reads are aligned against available reference 

genomes of bacteria, viruses, fungi, and known contaminates using the Novoalign 

(http://www.novocraft.com/) short read aligner. We set the –r parameter of Novoalign either to 

All (for the species level analysis) or to None (for the strain level analysis). This parameter 

determines the multiread strategy as described in the Other Considerations section below. 

Reads aligned to the bacterial references are filtered out if they do not pass the clustering tests 

described in the next section. The reads are normalized to correct the GC bias and reported as 

weighted counts per Mb of reference. The unaligned reads can still belong to species without 

reference genomes. These reads can be used for functional analysis after contig assembly with 

the subsequent blastx Uniprot search. 

Filtration Methods 

Bacterial genomes are known to actively recombine and incorporate genomic islands from 

bacteria of other strains or species. This can confound correct identification of species in a 

metagenomic sample. To avoid false attribution of mapped reads to references potentially 

containing genomic islands, it is necessary to filter out such bacterial hits that only have a few 

clusters or mapped reads. The following three steps were applied successively to achieve this:   

 (1) Single-sample t-test of the read start differences of neighboring reads. Ideally, all reads 

mapped to a genome should be uniformly distributed across its length. While some sequencing 

biases, such as GC bias or DNA fragmentation bias during the library preparation can distort a 

perfect uniform distribution of the read positions, such distortions are still negligible compared to 

the location bias of the reads mapping exclusively to the genomic islands. We can formally test 

it by calculating distances between the read start positions Δ of the neighboring reads and 

performing a single-sample t-test of the difference of the actual mean of such distances   and 

the null hypothesis mean , where G is the genome length and N is the number of 

mapped reads.   

From our experience setting the cutoff p-value to p < 0.01 removes most hits with the 

genomic island pattern of read clustering. However, some cases with a high number of islands 

can still produce high enough p-value to evade this test. 
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(2) Estimation of bacterial genome size based on the Poisson model. In this step we consider 

distances among all reads in a circular bacterial genome. In this case they are calculated as 

 

We can estimate the mean of distances between each possible pair of reads as   

 

According to (6) this mean value can be used to estimate the size of a circular bacterial genome 

as 

, 

where N is the number of mapped reads and z is the z-score, which can be set to 1.96 for a 

95% confidence interval. 

From experience we can see that when this confidence interval is used we can filter out hits 

with the actual genome size 10 times greater than the upper bound of the confidence interval of 

the estimated genome size . Such significant difference can be explained by read 

clustering within genomic islands, hence, such bacterial hits can be safely discarded. When 

maxpredG
is 10 to 50% of the actual genome size, it is hard to programmatically determine if the 

reads are clustered in genomic islands. However, the heuristic described in the last filtration 

step can be applied before manual inspection of the alignment statistics.     

(3) Filtration of hits based on the distribution of Δ counts of neighboring reads. This step is a 

heuristic that was formulated based on manual inspection of the uncertain cases from step 2.  

For hits with a small number of mapped reads (200 or less), if the distances between 

neighboring reads Δ that are shorter than 10 bp constitute at least 75% of distances Δ of any 

length, then the reads in this hit are mapped to genomic islands and the hit can be discarded. 

GC Normalization 

GC bias is the most significant bias adversely affecting coverage of GC-rich regions of a 

sequenced genome. Generally, G and C bonds are more stable than A and T, due to the fact 

that they have one extra hydrogen bond and their stacking interactions are quite different. 

Particularly, G-C pairing does not affect DNA duplex, while A-C pairing is always destabilizing 
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(7). It is present to various degrees in short-read next-generation sequencing technologies (5). 

Obviously, GC bias affects abundance estimates of bacterial genomes in metagenomic 

samples, particularly the ones with high GC content. As noted in (8) GC of the full PCR-

amplified fragment rather than the forward read (or forward and reverse reads for paired-end 

sequencing) of this fragment primarily determines the GC bias. This also confirms previous 

findings of Aird et al. (9) that the PCR component of the GC bias is the one that contributes 

most, while the downstream instrument related bias is also present, but to a lesser degree. 

Moreover, there exists a global source of GC bias on the scale larger than the fragment length 

due to association with higher order structures of the DNA (8). We take into account this global 

source of GC bias and the PCR-induced, fragment GC bias by considering GC content of the 

genome to which the read is mapped, which is important in metagenomic samples with multiple 

bacterial genomes of a wide GC range. We take into account the post-PCR instrument GC bias 

by considering GC content of each read. In other words, a GC-rich read from a GC-poor locus 

typical of GC-poor genomes is more likely to be sequenced than a read with the same GC 

content, but located in a GC-rich locus. We confirmed this idea by pooling and sequencing 

equal amounts of seven bacteria ranging in GC content from 32.8 to 70.8%  and calculating a 

GC bias curve for each of them (Fig. 2). Using the pooled sample rather than sequencing 

individual bacteria was important to simulate under- or over representation of bacteria in a 

metagenomic sample based on their GC content. The curves in Figure 2 were created by 

calculating the normalized coverage (GC bias) at each GC percentage point i using the 

CollectGcBiasMetrics utility from Picard Tools (http://broadinstitute.github.io/picard/). This 

program calculates normalized coverage for the case of sequencing a single genome as 

follows: 

,  

where iRst  is the count of read starts within windows of GC% i and iW  is the count of 

windows of GC% i. The ratio with the total values ( ) normalizes the estimation to 

the average number of reads per window across the whole genome. To calculate normalized 

coverage of a single bacterium in a pooled sample we modified this formula as follows:  

, 

where j = 1,..., m are indices for m bacteria in a pooled sample. In this formula we distribute the 

total number of read starts in a sample TotalRst  equally among all bacteria in the pool instead of 

using the actual number of mapped reads to bacterium j, thus, accounting for potential under- or 

over representation of bacteria due to their GC content. However, the total number of windows 
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of various GC content is unique to a particular genome, therefore, is used in the 

formula. The read length of our sequences was 75 bp, though some reads were trimmed during 

the alignment. We used the default window size for short reads, which is 100 bp. 

As shown in Figure 2, reads from GC-poor genomes were overrepresented, while the 

general bell-shaped-like curve of GC bias can be, at least partially, observed in all genomes. 

Our GC normalization model was designed by non-linear multiple regression of the 

experimental normalized coverage. In this model the dependent variable is the normalized 

coverage coefficient of the read (as defined by the equation above), while the GC content of the 

read and the GC content of the genome to which this read mapped are the independent 

variables. To normalize for GC bias each read should be divided by its normalized coverage 

coefficient. 

The following formula was used for the regression:  

, 

where  is GC content of the read, is GC content of the genome to which the read 

is mapped, are regression coefficients, and B is the bell-shaped curve function of read 

GC content, defined as 

. 

The third degree polynomial in the regression formula accounts for imperfections in the bell 

shapes of the observed normalized coverage curves. The last term of the formula approximates 

the observed influence of genome GC content. Even though the Nocardia farcinica genome with 

the highest GC content (70.8%) appears to have higher normalized coverage values than two 

genomes with lower GC content (Pandoraea apista, GC 64.9% and Burkholderia cepacia, GC 

67.7%), we suspect that these higher normalized coverage values are outliers, because 

genomes with higher GC content should be more difficult to sequence. Therefore, we used the 

(upside-down) logarithm function to approximate this dependency. The constructed model is 

only an approximation, therefore, to avoid extremely low predicted values, which would set 

unreasonably high weights to some reads, we set all predicted values less than 0.1 to 0.1.  

The regression was performed using the nls function in R. The contour plot of the produced 

model is shown in Figure 3. 
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Other Considerations 

Metagenomic analysis using WMS sequencing can be performed on the strain level or species 

level. To perform the strain level analysis only reads that are mapping uniquely to the strain-

level references should be considered, thus achieving the desired specificity. However, from our 

experience, depending on the promiscuity of bacteria present in a metagenomic sample the 

percentage of multireads that map to multiple locations in the same or multiple genomes can 

vary from 5 to 96% of the total number of reads. Therefore, if the species level of analysis is 

desired, the multireads can be used for abundance estimates as long as each of them is 

counted only once and assigned to a single species. Our in-house Perl script performs such 

assignment by discarding multireads that map to more than one species and collapsing hits to 

multiple strains of the same species produced by a single read. 

Another important consideration for accurate reporting of bacterial abundances in 

metagenomic species is the genome length normalization. This procedure is common in other 

analyses involving counting of short reads mapped to genomic features, e.g., RNA-seq, where 

RPKM (4) values are used for absolute levels of gene expression. Following the same logic, 

longer bacterial genomes will have a higher chance to produce sequencing reads. To account 

for this, the final bacterial abundances can be reported as GC-weighted read counts per Mb of 

reference.  

Finally, estimation of bacterial loads in a metagenomic sample may be desirable, e.g., to 

assess an infection in an animate habitat. In this case, we can utilize the host background DNA 

to do this assessment and report absolute bacterial abundances per DNA content of a single 

host cell. If the host is human, the absolute abundance of each species per human cell can be 

calculated as follows: 

, 

where  is the GC weighted read count per Mb reference of the given species, 

is the human read count, and 6191.39 is the length of a diploid human genome divided by a 

million (to account for the bacterial count scale). 

RESULTS 

Filtration of hits with clustered reads 

We tested our three-step approach to filtering hits with reads potentially clustering in genomic 

islands by collecting percentages of filtered out reads for 30 cystic fibrosis sputum samples. If 

our method was filtering hits (and the associated reads) in samples with fewer reads more 

aggressively, this would indicate that our approach is biased by the sample read count and is 
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not applicable. However, we only found weak correlation between the number of mapped reads 

and the proportion of filtered out reads (Pearson’s R = -0.237). The distribution of percentages 

of the filtered out reads vs. the number of mapped reads is shown in Figure 1. 

GC normalization 

To identify the effect of the GC bias on abundance estimates of a collection of genomes in a 

metagenomic sample we sequenced a pooled sample with equal amounts of DNA of seven 

bacterial genomes. Figure 2 shows superimposed curves of normalized coverage vs. GC 

percentage for each of the genomes. All data points with p-values less than 5% were removed.  

As described in Materials and Methods, the normalized coverage reflects the GC bias of the 

genome at locations stratified by each GC percentage point. While the curves vary in shape, 

they all follow the same unimodal bell-curve pattern with various degrees of distortion. Notably, 

the E. Coli curve (genome GC 50.5%) remains relatively high in the GC range from 25 to 50%. 

This can be explained by the fact that sequencing kits are often optimized for human genome 

sequencing and it is known that GC content of 100 Kb fragments of the human genome can 

range from 35 to 60% (10).  

Another clear observation from Figure 2 is that there is an inverse relationship between 

normalized coverage and genome GC content. Therefore, our GC bias model was designed 

with two independent variables: read GC content and GC content of the genome to which the 

read was assigned. The resulting nonlinear multiple regression model is described in detail in 

Materials and Methods. For our normalized coverage data, presented in Figure 2, the residual 

standard error was 0.3283 on 334 degrees of freedom. Conversion was achieved after 12 

iterations with the conversion tolerance of 9.335e-06. The contour plot of the model is shown in 

Figure 3. Visual inspection of the contour plot shows that the model approximates the empirical 

data well and without undue over-fitting. As mentioned earlier, all values of the dependent 

variable approximated below 0.1 are programmatically set to 0.1.   

The effects of GC- and genome length normalization are shown in Table 1 where the species 

abundances of a sample are reported as raw read counts, GC-weighted read counts, and GC-

weighted read counts per Mb of reference. The three reported counts vary significantly for some 

species changing their rank number after the normalization steps. 

Bacterial load estimates 

For some metagenomic studies it is essential to assess absolute abundances of bacterial 

population. For example, examining the amount of bacteria found in lower airways of a cystic 

fibrosis patient can help diagnose the disease progression. Such assessment can be made by 

identifying the percentage of human DNA in the sample. Figure 4 shows relative and absolute 

abundances of bacteria in sputa taken from two patients with cystic fibrosis at 3-month intervals. 
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Please note that the presentation of relative percentages as it is common for most microbiome 

studies may lead to an erroneous interpretation.  

DISCUSSION 

Estimation of bacterial abundances by whole-metagenome shotgun (WMS) sequencing is 

based on the counts of reads mapped to a collection of entire bacterial genome references 

rather than a region of the 16S gene or other biomarkers uniquely identifying a genome. This 

poses a challenge since some reads mapped to one of the references can belong exclusively to 

genomic islands horizontally transferred from other organisms. Other challenges include uneven 

coverage of the reference genomes due to GC bias inherent to PCR and short-read next-

generation sequencing platforms. Even varying lengths of the reference genomes affect 

likelihood of a read mapping to a particular bacterial genome reference, which is not a problem 

for 16S analysis where the sequenced variable regions of the 16S gene are all of the same 

length. However, we have shown that all these obstacles can be addressed by filtration and 

normalization procedures, thus leading to more accurate estimation of bacterial abundances in 

a metagenomic sample.     

The structure of bacterial genomes is often dependent on frequent recombination due to 

significant evolutionary pressure to survive in hostile environments. Some bacterial genomes 

are particularly promiscuous in accepting horizontally transferred genomic islands, e.g., 

Pseudomonas or Burkholderia. We have shown that it is possible to identify false positive 

bacterial hits with reads clustered in their genomic islands. Application of our three-step filtration 

procedure removed 1.7 to 15.9% of such bacterial hits in the 30 cystic fibrosis airway samples 

(Fig.1).  

Typical methods for GC correction rely on applying local regression (8, 11–13), e.g., LOESS, 

or quantile normalization methods (13, 14)  to the data points created by read counts mapped to 

genes or non-overlapping windows of the reference sequence grouped into GC-stratified bins 

vs. the GC content of the bins. The raw read counts are then normalized, e.g., by calculating the 

correction value for each feature as the difference between the fitted value and the median 

across all bins. This strategy works well when a single genome is analyzed. In a metagenomic 

sample certain genomes have a small number of reads mapped to them making this approach 

inapplicable for GC normalization of actual data. On the other hand, it is possible to create an 

approximation model based on a collection of GC bias curves of genomes varying in their GC 

content (Figure 2). We do not rely on LOESS regression, because it requires large and densely 

sampled datasets covering the entire two-dimensional parameter space (read GC and genome 

GC). In our case due to technological limitations we did not have data for very low GC regions 

of the high-GC genomes or very high GC regions of the low-GC genomes (Figure 2). Therefore, 

we used multiple nonlinear regression that specified the expected bell-shape curve of the 

regions with the missing data. Moreover, the resulting regression function can be easily 
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implemented in a script and applied to metagenomic data generated using the same DNA 

sequencing setup. It is important to note that the overall GC bias is unique to a particular 

sequencing setup and comes primarily from the PCR GC bias resulting from the kits used and 

the downstream instrument GC bias, which is different for different platforms. Therefore, 

metagenomic labs interested in implementation of our GC bias normalization procedure should 

collect the data for individual bacterial genomes of varying GC content sequenced in a pooled 

sample and repeat our regression procedure to identify the regression coefficients specific to 

their sequencing setup. 

Finally, GC normalized reads can be reported per Mb of bacterial reference to account for 

the increased likelihood of mapping reads to longer genomes. Batch effects can also lead to 

bias associated with the length of the reference sequence, e.g., in RNA-seq samples. However, 

it has been reported that that this type of length effect is the strongest in features less than 1000 

bp and it plateaus after 5000 bp (14), therefore, it does not affect estimation of bacterial 

abundances in metagenomic data.    

In some cases, metagenomic samples of human flora taken over a certain period of time 

from the same source, e.g., sputum of a cystic fibrosis patient, afford an opportunity to report 

changes in bacterial load. In this case, the proportion of human DNA background can be utilized 

to calculate the total bacterial load, which can reveal the disease stage of the patient. The 

relative bacterial abundances estimated as described above can be transformed to absolute 

estimates based on the identified bacterial load.    
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TABLE AND FIGURE LEGENDS 

Table 1. Top 30 bacteria found in found in sputum of a cystic fibrosis patient sorted by 

GC-normalized reads per Mb of reference. 

Figure 1. Percentage of filtered out reads vs. the total number of mapped reads. Read 

alignments of thirty cystic fibrosis samples were filtered to remove hits with reads mapped to 

horizontally transferred genomic islands. There is no significant correlation between the sample 

size and the percentage of filtered out reads.  

Figure 2. Normalized coverage vs. GC content of seven bacteria sequenced in a pool. The 

sequences bacteria are: Staphylococcus aureus (dark blue line, 32.8% GC), Streptococcus 

pneumoniae (light blue line, 39.7% GC), Escherichia coli (teal line, 50.5% GC), Klebsiella 

pneumoniae (green line, 57.3% GC), Pandoraea apista (tan line, 64.9% GC), Burkholderia 

cepacia (orange line, 66.7% GC), and Nocardia farcinica (red line, 70.8% GC). Equal amounts 
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of DNA from each bacterium were sequenced in a pool and mapped to their respective genome 

references. The normalized coverage was calculated for each GC percentage point based on 

the proportion of the number of reads mapped to 100 bp genome windows having this GC 

content to the number of such windows and normalized by the proportion of the expected 

number of all reads to the number of all windows for a given genome.   

Figure 3. Contour plot of the proposed GC normalization model. The model approximates 

expected normalized coverage of genomic regions stratified by their GC content for bacterial 

genomes of various overall GC content in a pooled whole-metagenome shotgun sequencing 

sample. Generally, the regions higher than the contour line of value 1 are overrepresented and 

the regions lower than this line are underrepresented. To perform the GC normalization, each 

binned read in a metagenomic sample should be divided by the normalized coverage value 

predicted based on its GC content and the content of the genome to which it mapped.   

Figure 4. Relative and absolute abundances of bacteria in upper airways of two cystic 

fibrosis patients. The two upper graphs show relative (left) and absolute (right) bacterial 

abundance estimates of a patient with the homozygous F508del mutation in the CFTR gene. 

The three samples were taken roughly three months apart and reflect disease progression and 

response to treatment. Changes in the amount of Pseudomonas aeruginosa characteristic of 

the cystic fibrosis disease grade can be clearly observed in the absolute abundances graph, 

while the relative abundances can be misleading. The two lower graphs show the data for a 

patient with the 1898+3 A-G mutation in the CFTR gene. This is a much milder case compared 

with the previous patient. This is only evident from the absolute abundances graph showing 

much lower bacterial loads in the upper airways of the patient.   

Figure 1      Figure3 
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Chapter 7 

The cystic fibrosis lower airways 

microbial metagenome  

 

7.1 Background 

Whole genome shotgun (WGS) sequencing has been identified as the most robust and 

comprehensive method for metagenomics research, becoming an alternative to 16S rDNA 

sequencing. Although, the majority of microbial community studies have utilized 16S rDNA 

sequencing techniques, WGS provides a deeper analysis making the identification of low 

taxonomic levels, like species or strains, to one of its major advantages compared to previous 

technologies.  WGS sequencing provides further benefits such as the quantification of absolute 

abundances of species, reconstruction of metabolic pathways, gene prediction or identification 

and reconstruction of novel genomes90. 

WGS sequencing projects produce vast amounts of data which makes the computational and 

bioinformatics analysis to one of the main keys for a successful metagenomic study. Numerous 

tools have been developed to handle 454 pyrosequencing or Illumina metagenome sequences, 

but there are only few computational resources for the analysis of metagenome sequences 

generated by the SOLiD platform.   

WGS metagenome sequencing has already been applied to explore microbial communities in 

human habitats, for example, in skin91, intestine6,29,92 and in the global human microbiome 

project10.However, a comprehensive and exhaustive analysis of the cystic fibrosis lower airways 

microbiome has not been done before.  

Cystic fibrosis (CF) is the most common lethal autosomal recessive disorder in Caucasians 

populations. It is caused by mutations in the CFTR gene which encodes the CF transmembrane 

conductance regulator (CFTR). The major clinical manifestations are severe pulmonary and 

intestinal symptoms, in particular chronic pulmonary inflammation, microbial lung infections, 

intestinal obstruction and pancreatic insufficiency. CFTR transports chloride and bicarbonate 



Chapter 7. The cystic fibrosis lower airways microbial metagenome 

 

94 
 

transport across the apical membrane of epithelial cells. CFTR is defective or absent in CF. 

Consequently an acidified and dehydrated milieu is generated in the extracellular epithelial 

lumen which provokes mucus plugging and obstruction of ducts. In the airways this thick mucus 

provides a favorable environment for the colonization and growth of opportunistic bacterial 

pathogens causing inflammatory responses and infections in CF patients. For this reason, a 

better understanding of the complexity of the cystic fibrosis lower airways microbial community 

is needed as well as the identification of the nucleotide variants in the main pathogens or 

antibiotic resistance genes. 

7.2 About the paper 

In this article, we present the first  comprehensive and unbiased study of the cystic fibrosis 

lower airways metagenome. We determined the composition of viruses, fungi and bacteria of 

temporal series of induced sputa collected from 15 exocrine pancreas insufficient (PI) and 10 

exocrine pancreas sufficient (PS) individuals with CF. To perform the analyses we used direct 

shotgun 5500xl SOLiD sequencing and a novel in-house pipeline for the analysis of sequences. 

Our approach incorporated 1800 bacteria, 5804 virus and 610 complete reference genomes 

downloaded from the NCBI database. Using the new normalization model (described in Chapter 

4) for SOLiD technology we identified the absolute and relative abundances of species present 

in the poly-microbial communities of the CF samples.   

Our study demonstrates that a large number of microbial taxa inhabits the CF lower airways. 

Microbial communities were characterized by an individual signature of multiple lowly abundant 

species and few CF typical pathogens (like S. aureus and P. aeruginosa) as the dominant 

species.  

Our approach identified on the average several hundred bacterial taxa and less than 10 DNA 

viruses or fungi, in all age and disease subgroups.  

Author’s contribution 

In the following study, my contribution was conducting the metagenomic analysis, and 

also, creating a custom pipeline in perl and R to make this analysis optimized and 

reproducible.   

For Tables, please refer to the DVD attached to the thesis. 

 

 

 



Chapter 7. The cystic fibrosis lower airways microbial metagenome 

 

95 
 

The cystic fibrosis lower airways microbial metagenome 

 

Patricia Moran Losada,1 Philippe Chouvarine,1 Marie Dorda,1 Silke Hedtfeld,1 Samira Mielke,1 

Angela Schulz,1,2 Lutz Wiehlmann,1,2 Burkhard Tümmler1,2* 

1Clinic for Paediatric Pneumology, Allergology and Neonatology, OE 6710, Hannover Medical 

School, Hannover, Germany  

2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the 

German Center for Lung Research, Hannover, Germany 

 

 

Abstract 

Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Here we 

present unbiased quantitative data about the frequency and abundance of DNA viruses, 

archaea, bacteria, molds and fungi in CF lower airways. Induced sputa were collected on 

several occasions from children, adolescents and adults with CF. Deep sputum metagenome 

sequencing identified on average about ten DNA viruses or fungi and several hundred bacterial 

taxa. The metagenome of a CF patient was typically found to be made up of an individual 

signature of multiple lowly abundant species superimposed by few disease-associated 

pathogens such as Pseudomonas aeruginosa and Staphylococcus aureus as major 

components. The host-associated signatures ranged from inconspicuous poly-microbial 

communities in healthy subjects to low-complexity microbiomes dominated by the typical CF 

pathogens in patients with advanced lung disease. The DNA virus community in CF lungs 

mainly consisted of phages and occasionally of human pathogens such as adeno- and 

herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and 

numerous minor clone types. The rare clones constitute a low copy genetic resource which 

could rapidly expand as a response to habitat alterations such as antimicrobial chemotherapy or 

invasion of novel microbes.   
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Introduction 

Cystic fibrosis (CF) is a life-shortening, debilitating, autosomal recessive disease that is caused 

by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene [1]. 

The basic defect of impaired epithelial chloride and bicarbonate secretion predisposes to 

chronic airway infections with opportunistic pathogens which determine most morbidity in 

people with CF [1]. Epidemiological data drawn from culture-dependent diagnostics of 

respiratory specimens indicated that CF patients become colonized in their airways with 

Haemophilus influenzae and Staphylococcus aureus during early childhood followed by 

Pseudomonas aeruginosa and sometimes by organisms such as Burkholderia cepacia complex 

or atypical mycobacteria later in life [2]. Culture-independent technologies, however, revealed 

that the CF respiratory tract is not inhabited by these few pathogens, but rather by complex 

poly-microbial communities [3 – 10]. Sequencing of PCR-amplified parts of bacterial 16S rDNA 

genes could identify over 100 distinct genera including Streptococcus and numerous anaerobes 

as major players that are routinely not detected during the culture-dependent processing of CF-

derived respiratory secretions.  

Sequence variations in the ancient and ubiquitous ribosomal RNA genes are considered to 

reflect the universal molecular clock of life [11]. Correspondingly the composition of microbial 

communities is described by the abundance of individual rDNA sequences. Yet one has to 

accept some inherent biases of this approach. First, prokaryotes and eukaryotes need to be 

analyzed separately due to their basic difference of rDNA sequence and correspondingly most 

work has been confined to the bacterial microbiota. Second, the sequences of the sample are 

prepared for analysis by oligonucleotide primer-based amplification steps. Subsequent 

sequencing of the amplicons has a limited ability to resolve taxonomic identification to the 

species level, may fail to detect phyla and can skew the estimation of species relative 

abundance in a community [12 - 13].  

These limitations can be overcome by whole-genome shotgun sequencing (WGS) [14] that 

allows a functional assessment of the gene content of the community and may provide 

information about the composition of the community up to the level of clonal complexes. Within 

the context of the CF lungs, the published studies have so far focused on the sputum 

metagenomes derived from CF adults with advanced lung disease [15 – 17]. Each of the ten so 

far investigated subjects hosted a unique poly-microbial community.  

This study extends the scope to patients of all age groups and grades of disease severity in 

order to cover the whole range of lower airways microbial metagenomics in CF. Induced sputa 

collected from exocrine pancreatic sufficient (PS) and exocrine pancreatic insufficient (PI) 

children, adolescents and adults with CF were investigated by WGS in order to identify the 

bacteria, archaea, DNA viruses, molds and fungi residing in the respiratory secretions. 

Normalization provided quantitative data about the relative and absolute abundance of microbial 
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species. Moreover, by focusing on the major CF pathogens S. aureus and P. aeruginosa the 

metagenome sequence data sets were examined for the number of co-existing clone types and 

uncommon, probably de novo mutations in antimicrobial resistance determinants. In the future 

such a metagenome-guided deep insight into clone and sequence variations could assist in our 

management of respiratory tract infections. 

Methods 

Patients. Subjects with CF were recruited from the CF clinic of Hanover Medical School. All 

patients had been regularly seen at the CF clinic since the age of diagnosis. The diagnosis of 

CF had been made by the detection of two disease-causing mutations in the CFTR gene [18] 

and elevated chloride concentrations in the Gibson-Cooke pilocarpine iontophoresis sweat test 

[19] or a Sermet score in the CF range of nasal transepithelial potential difference 

measurements [20, 21] and/or chloride secretory responses in the CF range of intestinal current 

measurements [22]. Exocrine pancreatic status was assessed by the fecal-elastase-1 test [23]. 

Lung function was assessed by spirometry, bodyplethysmography and in the healthier subjects 

by multiple breath nitrogen washout [24, 25]. The 15 exocrine pancreas insufficient (PI) patients 

were homozygous for the most common CF mutation p.Phe508del [18]. The 10 exocrine 

pancreas sufficient (PS) subjects were either compound heterozygous for a PI- and a PS-

conferring CFTR mutation [18] (9 subjects) or homozygous for a PS mutation [18]. At the date of 

recruitment patients were either 8 – 13 years old (children, group A), 18 – 23 years old 

(adolescents and young adults, group B) or elder than 28 years (adults, group C). Patients were 

also classified by disease severity. Healthy CF subjects had normal anthropometry (body mass 

index > 19) and normal lung function, i.e. multiple breath nitrogen washout revealed a normal 

lung clearance index and spirometry yielded FEV1 values of more than 90% predicted. Mildly 

affected CF patients (category ‘mild’) exhibited normal anthropometry, an anomalous lung 

clearance index and FEV1 values of 70% - 110% predicted at the day of recruitment. Lung 

function was chronically compromised for three years or more in all moderately or severely 

affected CF patients (FEV1 50 - 70% predicted, category ‘moderate’; FEV1 30 – 50% predicted 

in the absence of an acute pulmonary exacerbation, category ‘severe’; FEV1 < 30% predicted in 

the absence of an acute pulmonary exacerbation, category ‘end-stage lung disease’).  The 

study was approved by the Ethics Committee of Hannover Medical School (no. 1510-2012). 

Wet-lab experimental procedures. The procedures are described in the supplementary 

material. Briefly, induced sputum was collected by autogenic drainage during cycles of 3-

minutes inhalation of 3% hypertonic saline. After sputa had been diluted with buffer and 

subjected to hypotonic lysis, DNA was purified from the suspension according to the ‘Hard-to-

lyse-Bacteria’ protocol with the NucleoSpin Tissue kit (Machery-Nagel, Düren). DNA libraries 

were prepared from sheared DNA according to an in-house protocol. Sequencing was 

performed on a SOLiD 5500XL system (Life Technologies) in color space with 75 bp read 

length and implemented Exact call chemistry (Life Technologies).  
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In silico analyses.  Approaches and software are described in the supplementary material. In 

brief, the raw sequence reads were trimmed and then (in this order) low quality reads, human 

reads, non-human low-complexity reads and non-human reads encoding mobile genetic 

elements were removed. The remaining microbial reads were normalized by GC content and 

genome length. This curated data set was then used for the identification of taxa (DNA viruses, 

bacteria, archaea, molds and fungi), principal component analysis, search for mutation in 

antimicrobial resistance genes and analysis of the S. aureus and P. aeruginosa populations in 

the respiratory secretions. 

Results 

Lower airways microbial metagenome of PS and PI individuals with CF 

Induced sputa were collected on several occasions from 10 PS and 15 p.Phe508del 

homozygous PI subjects with CF. Deep metagenome sequencing identified on average less 

than ten DNA viruses or fungi and several hundred bacterial taxa in samples from children 

(group A), adolescents (group B) and adults (group C) (Fig. 1b, Fig. S1, data sets in Tables S1 

and S2). Bacteria typically made up more than 99% of the microbial community (Fig. 1a). The 

median contribution of DNA viruses and fungi was on average less than 1%, but it varied 

between 0.002% and 11% in the individual sample.  Anaerobes are characteristic inhabitants of 

the upper and lower airways of healthy non-CF humans [26]. In our cohort of CF patients the 

proportion of anaerobes in the microbial metagenome decreased with age (Fig. 1c). This 

decline started earlier and was more pronounced in PI than in PS subjects consistent with the 

known earlier onset and more rapid progression of lung disease in p.Phe508del homozygotes 

who present the typical symptoms of CF disease since birth [1]. The dominant taxa in the 

cumulative metagenome of the whole cohort were the bacterial species that are most frequently 

reported from culture-dependent diagnostics, i.e. streptococci, staphylococci, pseudomonads, 

Haemophilus sp., Burkholderia sp. and Stenotrophomonas sp. (Fig. 1d, Table S2). Thus 

quantitative metagenomics fits with culture-based epidemiological data for the most abundant 

bacterial species in CF lungs.   

Figure 2 provides a detailed overview of the frequency of recovery of all detected species and 

their relative abundance. Taxa and primary data are listed in Tables S1 and S3. The viral 

community consisted primarily of phages (Fig. 1d), a few human pathogens, primarily herpes 

virus and adenovirus, and rare cases of viruses infecting non-mammalian eukaryotic hosts. 

Dominant species in the mycobiome were Aspergillus species and Saccharomycetes including 

Candida sp. consistent with current knowledge of CF mycology [27]. The community of bacteria 

and archaea turned out to be highly diverse including numerous species and phyla that yet have 

not been reported to inhabit the niche of the human CF lung. The lead pathogen P. aeruginosa 

was identified in all specimens from PI patients although six of them had been classified as P. 

aeruginosa negative according to the clinical records. This finding suggests the ubiquitous 
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presence of P. aeruginosa in respiratory secretions of PI CF patients. However, in all specimens 

taken from these misclassified patients P. aeruginosa was only present at low abundance on 

average of 0.02% of all reads. 

The cladograms in Figure 3 focus on the bacteria which made up the top 95% of the cumulative 

metagenome population of PI (Fig. 3a) and PS CF patients (Fig.3b). The population in PI CF 

airways was dominated by pseudomonads and staphylococci followed by Veillonella, 

Streptococci, Prevotella, Rothia and other enterobacteriaceae as minor contributors. The 

spectrum of genera was similar in PS CF patients, but streptococci were more prominent and 

the population was more diverse and less skewed towards P. aeruginosa.  Principal component 

analysis revealed a broadly scattering distribution of data sets retrieved from PS patients and 

strong clustering of data sets for the samples from PI subjects (Fig. 4)  indicating that bacterial 

communities are more host-specific in PS CF and more disease-specific in PI CF.  

Individual microbial metagenome signatures and CF disease severity 

Whole metagenome analysis resolved the microbial signature of the individual patient. The 

spectrum ranged from a normal flora via an intermediate stage when the normal community is 

perturbed by H. influenza or S. aureus to a final stage of a low-diversity community dominated 

by P. aeruginosa [28] (Table S1, Fig. 5, Fig. S2).  This shift from a normal highly diverse 

metagenome indistinguishable from that of a healthy subject to the CF-typical end-stage of an 

almost pure culture of P. aeruginosa was correlated in our patient cohort with disease severity, 

but not with age. As shown in Figure 5, the diversity of the bacterial communities of the top 90% 

constituents decreased with increasing lung disease severity.   

The metagenome of a CF patient was typically found to be made up of an individual signature of 

multiple lowly abundant species superimposed by few disease-associated pathogens such as 

P. aeruginosa and S. aureus as major components. This phenotype became more obvious if we 

normalized the microbial reads to the human DNA in the sample. For example, as is illustrated 

in Figure 6, a PS CF patient appeared to have an unrelated metagenome to that of a PI CF 

patient with chronic colonization with P. aeruginosa if presented in bar charts as fractions of 

total microbial reads (Fig. 6a, 6b). However, after human DNA normalization it can be seen that 

a quantitatively similar pattern of non-pathogenic species (‘normal flora’) in the two subjects is 

overshadowed by P. aeruginosa in the PI CF patient, whereas no typical CF pathogens are 

detectable in the healthy PS CF patient (Fig. 6c, 6d).  This normalization clarifies some 

discrepancies in complexity between the microbiomes resolved by comprehensive culture-

independent techniques and those based on culture-dependent diagnostics the latter driven to 

detect disease-associated microbes and to ignore the ‘normal flora’. 

Clonal diversity of the S. aureus and P. aeruginosa populations in CF lungs 

The clonal composition of S. aureus and P. aeruginosa communities in CF sputa was 

determined from the frequency distribution of SNPs in the metagenomes (Fig. 7, Table S4). 
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Most P. aeruginosa communities consisted of one major clone type (58% to 92% of total; 

median 83 %), up to two further clones (each contributing to more than 5% of the population) 

and at least two to nine rare clones (median: five clone types). Similarly, one major clone 

dominated the S. aureus community (53% to 98% of total, median 87%) accompanied by two to 

seven very minor contributors. In about half of the analyzed samples one or two clones had a 

share of more than 5%. Previous genotyping and subsequent genome sequencing of serial 

isolates had suggested that the CF lungs are chronically colonized with co-evolving clades of 

one or, less frequently, two or three clones [28-31], but our unbiased metagenome data indicate 

more diverse and more complex compositions of the S. aureus and P. aeruginosa populations 

in CF airways.  

To identify the genotype of the dominant S. aureus and P. aeruginosa strains within the frame of 

published typing schemes, the metagenome sequences were searched for matches with a 

multi-marker array for P. aeruginosa [32] and the MLST database for S. aureus [33]. Four of ten 

analyzed P. aeruginosa strains belonged to ubiquitous clones in the global P. aeruginosa 

population [32] and two pairs of 13 S. aureus strains were assigned to the common clone type 

ST7 and the pandemic MRSA lineage ST22 [33], respectively.  

Mutations in resistance genes to antimicrobial chemotherapy 

The chronic airway infections in CF are treated by chronic or intermittent antimicrobial 

chemotherapy, at least on the occasion of a pulmonary exacerbation, often accompanied with 

the emergence of multidrug resistant bacteria as the unwanted side effect [1, 2]. We searched 

the S. aureus and P. aeruginosa sequences in the metagenomes for uncommon non-

synonymous amino acid substitutions in targets of anti-infectives and/or mediators of 

antimicrobial resistance (Table 1). Mutations in the P. aeruginosa genomes affected genes that 

are known to be prone for mutation during antipseudomonal chemotherapy [34], but in case of 

S. aureus the mutations also emerged in the gyrase-encoding gyr loci [35] that are the targets 

for fluoroquinolones which the patients’ clinicians had never been prescribed as  

antistaphyloccocal chemotherapy. Besides the improbable cross-infection with a resistant strain 

the treatment of concomitant infections by P. aeruginosa with a fluoroquinolone would be the 

most likely explanation for the collateral mutations in the S. aureus  gyr genes. This example 

demonstrates the power of non-selective metagenome sequencing to detect genetic variations 

in traits of interest such as drug resistance, virulence or, lifestyle.   

Discussion 

Deep metagenome sequencing revealed a large repertoire of viruses, molds, fungi, archaea 

and bacteria in the CF lung habitat. The lower airways metagenome of a CF patient was 

typically found to be made up of an individual signature of multiple lowly abundant species 

superimposed by few classical CF pathogens such as P. aeruginosa and S. aureus as major 

components. This phenotype became more obvious if we normalized the microbial reads to the 
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human DNA in the sample. This presentation of data in terms of absolute abundance of 

microbes as shown in Figure 6 was more similar to the outcome of routine culture-dependent 

diagnostics that just communicate disease-associated aerobes, than the common output format 

of microbiomes as shown in Figure 5 that normalizes all patients’ samples to 100% irrespective 

of the absolute contents of microbes in the respiratory secretions [3 – 10]. In other words, the 

outcome of culture-dependent and culture-independent analysis of CF respiratory specimens is 

more similar than discordant modes of presentation may suggest.  

The paediatric CF microbiome has been shown to be more diverse than that of CF adults 

indicating that there may be a time window for therapeutic intervention that maintain diversity 

while reducing total bacterial load  [7, 36]. Our study now shows cases of young PI or PS CF 

adults who still have a healthy microbial metagenome. All study participants have been regularly 

seen since the age of diagnosis by a dedicated team of CF caregivers suggesting that 

continuous surveillance and intervention, if indicated, could prevent or decelerate progressive 

CF lung disease in some, but not all subjects.  

Consistent with literature reports [37, 38] the lead CF pathogen P. aeruginosa became a major 

member of the microbial community in subjects with compromised lung function. Mucus 

plugging, airway remodeling, micro-colony and biofilm formation will then drive the regional 

isolation of the microbial metagenome [28, 39]. Considering this spatial heterogeneity, all sputa 

were collected by autogenic drainage in order to retrieve metagenomes that are representative 

for the whole lung. 

Within-clone evolution of major clones is thought to trigger the adaptation of S.aureus and P. 

aeruginosa to the environment of the CF lungs [17, 28, 30, 31]. Our metagenome study now 

demonstrates that this concept does not cover the whole scenario. The S. aureus and P. 

aeruginosa populations do not only consist of one to three major clones, but also of numerous 

rare clones. These infrequent clones constitute a low copy genetic resource which could rapidly 

expand as a response to habitat alterations such as antimicrobial chemotherapy or invasion of 

novel microbes.  Thanks to the high accuracy of sequencing-by-ligation in the color space of 

99.943% we could resolve the clonal diversity of S. aureus and P. aeruginosa in CF airways. 

The error rates of the more often used sequencing-by-synthesis or single molecule real-time 

sequencing technologies are too high to reliably detect infrequent sequence variants which may 

explain why minor constituents of poly-microbial communities at the rank of strains and clone 

types have yet not been reported in the literature.  

Metagenome sequencing generated quantitative and unbiased data about microbial diversity in 

CF lungs. Extensive culture-enriched profiling of the CF airway microbiome identified families of 

bacteria in CF sputa that were not detected by parallel 16S rDNA sequencing [40]. These 

biases of 16S amplicon sequencing do not apply to metagenome sequencing. Knowing that 

metagenome sequencing discerned on average one order of magnitude more organisms at the 

species level than 16S rDNA analyses [40], we consider any culture-enriched molecular 
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analysis of CF sputum microbes to be dispensable if a metagenome approach is pursued. 

However, one should bear in mind that the sensitivity of the detection of rare members depends 

critically on the total number of microbial read sequences (see Fig. S3). Unless one is interested 

in specific features such as the spectrum of sequence variants in loci of interest, about half a 

million microbial reads are sufficient to provide a comprehensive metagenome analysis of taxa 

in CF airways.    
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Figure Legends. 

Figure 1. The cystic fibrosis lower airways metagenome: cumulative presentation of data 

sets. a, b Box plot presentation of the absolute frequency and the relative abundance (in %) of 

DNA viruses, bacteria and fungi identified in induced sputa sampled from the lower airways of 

exocrine pancreas insufficient (PI) and pancreas sufficient (PS) children (A), adolescents (B) 

and adults (C) with CF.  c,  Box plot presentation of the relative abundance of anaerobic 

bacteria in the sputa of PI and PS CF children (A), adolescents (B) and adults (C). d, The dots 

in the double logarithmic plot depict the sum of reads identified for bacteriophages and their 

corresponding bacterial hosts at the genus level. Genera are differentiated by number and 

color.  

Figure 2. Frequency and abundance of microbial species in the cystic fibrosis lower 

airways metagenome. Each dot in the double logarithmic graphs depicts the identification 

frequency of a species (in %) and its mean relative abundance (in %) in sputa collected from PI 

CF (a, c, e) and PS CF patients (b, d, f). Abundance was separately normalized for bacteria (a, 

c), DNA viruses (c, d), molds and fungi (e, f). The name of a taxon is depicted for the most 

common and most abundant species. Color codes: (a, b) Bacterial taxa belonging to the same 

phylum are indexed by matching color. (c, d) Viruses are differentiated by their host. (e, f) 

Molds and fungi are differentiated by class.  

Figure 3.  Taxonomic cladograms reporting the most abundant species contributing to the top 

95% of the bacterial communities of the lower airways of PI (a) and PS (b) patients with CF. 

Circle size is proportional to the log of average abundance. The height of the segments of the 

outermost ring indicates the relative abundance of the respective genera and phyla in all age 

groups. The next three outermost circles indicate the relative abundance of clades by color 

intensity for adults (green), adolescents (purple) and children (olive). The analysis is based on 

38 samples from PI and 24 samples from PS patients. Species of the genus streptococcus are 

a, S. parasanguinis; b, S. salivarius; c, S. oralis; d, S. mitis; e, S. pneumoniae; f, S. 

thermophilus; g, S. sanguinis; h, S. pseudopneumoniae; I, S. gordonii. 

Figure 4. Principal component analysis of the sputum metagenome data sets of PI (red) 

and PS (red) patients either normalized (lower panel, d, e, f) or not normalized (upper panel, a, 

b, c)  to human DNA in the sample.  

Figure 5. Composition of microbial communities in induced sputa of (from left to right) 

healthy, mildly, moderately, severely or very severely (end-stage lung disease)  affected 

individuals with CF. Data are presented in a stacked bar chart of relative abundance as 

fractions of total reads (y-axis) of the top 90% of species for each patient (x-axis). The color key 

indicating these species is shown at the right hand side of the figure.  

Figure 6. Bacterial sputum microbiomes of a PI CF patient who is homozygous for the 

most common CFTR mutation p.Phe508del (a, c) and of a PS CF patient (b, d) who is 
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homozygous for the rare splice mutation in the CFTR gene c.1766+3 A-G.   The same data 

sets are either presented as stacked bar charts of relative abundance as fractions of total 

bacterial reads (a, b) or as number of bacterial reads per human cell (c, d). Whereas the 

normalized bacterial microbiomes (a, b) suggest unrelated compositions of the bacterial 

communities in the respiratory tracts of the two patients, the normalization per human cell 

unravels similar colonization modes with anaerobes in the two patients which are 

overshadowed by the dominant P. aeruginosa community in the PI patient. The tracings at the 

top of the figures show original recordings of short circuit currents in rectal suction biopsies to 

characterize the basic defect and CFTR function in the two individuals with CF. The horizontal 

double-headed arrow corresponds to a recording time of 30 min and each vertical double-

headed arrow to a current of 10 µA/cm2. Intestinal current measurements (ICM) were performed 

per protocol by the addition of amiloride (1), indomethacin (2), carbachol (3), cAMP/forskolin (4), 

DIDS (5) and histamine (6). Carbachol, cAMP/forkolin and histamine induce chloride secretory 

responses seen in the ICM by signals in the upward direction. The tracings of the two patients 

show either no (a, c) or intermediate CFTR activity (b, d) as indicated by the cumulative chloride 

currents of 0 or 24 µA/cm2 implying that no functional CFTR is operating in the F508del 

homozygote whereas substantial residual CFTR activity is present in the PS CF subject.   

Figure 7. Clonal diversity of the S. aureus and P. aeruginosa communities in respiratory 

secretions. Metagenome samples with more than 40,000 species-specific reads were selected 

for the analysis of SNP diversity in S. aureus (blue) and P. aeruginosa (green) sequences at 

reference genome positions covered by more than 10 reads. The bars show the number of 

reads (y-axis) that at the SNP position were divergent (‘mismatch’) from the nucleotide of the 

most prevalent clone (‘match’). Bars are sorted in 1%-intervals of the mismatch/match ratio of 

the reads covering the SNP (x-axis). The abundance of the most prevalent clone in the 

community is given in the upper left corner in terms of the number of reads and its percentage 

of total reads.   
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Table 1. Non-synonymous sequence variants of antibiotic resistance genes qualified as rare or 

de novo mutations in S. aureus and P. aeruginosa populations of CF sputum metagenomes. 

 

Organism  Gene Amino acid substitution  No of patients 

       (no of samples) 

S. aureus gyrA p.Ser90Leu   2 (4, 2) 

   p.Leu576Phe   1 (1)  

   p.Arg843His   1 (1) 

   p.Thr833fs   1 (1) 

   p.Asp891_Glu892dup 1 (2) 

  rpoB p.Asp320Asn   1 (1) 

  parE p.Asn139Ser   2 (2, 1) 

   p.Gly530Asp   1 (1) 

P. aeruginosa mexS p.Ala235Thr   1 (3) 

   p.Arg48His   1 (1) 

  mexI p.Ala782Glu   2 (1, 1)  
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Supplementary Information 

Methods 

Wet lab experimental procedures 

Sampling and processing. Sputum was collected within one year on two to four occasions 

according to the Standard Operating Procedure 530.00 of the CFFT Therapeutics Development 

Network Coordinating Center [1]. In brief, the subjects performed up to 4 cycles of 3-minutes 

inhalation of 3% hypertonic saline with the Pari Boy S nebulizer (PARI, Starnberg, Germany). 

Secretions were mobilized by autogenic drainage in order to ensure representative sampling of 

the whole lung. Expectorated respiratory secretions were flushed with nitrogen, shock-frozen at 

-80°C and then stored at -80°C or immediately processed.  

Fresh or thawed samples were diluted 1:5 with ice-cold 97.5 % phosphate buffered saline/2.5% 

mercaptoethanol (v/v) and incubated on ice for 2 h under shaking. The suspension was 

centrifuged (15 min; 3,800 g; 10°C), the pellet was dried for 10 s, dissolved at 4°C in 10 mL bi-

distilled water and then incubated on ice for 15 min on a rocker switch. This cycle of 

centrifugation, drying and incubation in distilled water was repeated twice. The pellet was 

dissolved in 1 mL 0.1 RDD-buffer (QIAGEN, Hilden) and incubated in two 0.5 mL aliquots with 

60 units DNase I for 90 min at 30°C under shaking (350 rpm). The solutions were combined, 

diluted with 40 mL DNase buffer and centrifuged (15 min; 3,800 g; 10°C). The pellets were 

washed three times with 10 mL SE-buffer each by centrifugation, then dissolved in 0.5 mL SE-

buffer and pelleted again (10 min, 12,000 g, 10°C). Subsequently genomic DNA was purified 

according to the ‘Hard-to-lyse-Bacteria’ protocol with the NucleoSpin Tissue kit (Machery-Nagel, 

Düren). DNA was stored at 4°C in Tris-EDTA buffer. Yield of double-stranded DNA was 

determined at the Qubit 1.0 fluorimeter with the Qubit dsDNA BR assay kit (Q32850, Agilent 

technologies). This protocol was found to be an acceptable compromise to obtain some non-

stoichiometric amounts of hard-to-lyse mycobacteria and fungi and not to lose all easy-to-lyse 

mycoplasms. 

DNA library preparation. 0.1 - 1 µg of DNA was sheared in a Covaris S2 system. End repair 

and size selection to an average of 200 bp fragment size was performed according to standard 

protocols (Fragment library generation, Life technologies (LT)/Thermo). Standard protocols for 

the generation of fragment libraries for NGS applications generate a bias for GC-rich 

sequences, as the ligation of the adaptors becomes inefficient for DNA fragments containing 

more than 65% GC. To compensate for this constraint, we modified the ligation step of the 

standard protocol (LT/Thermo). The dA tailing reaction was performed in ¼ of the standard 

volume with Stratec Taq Polymerase instead of the LT- dA tailing enzyme (DNA 9µl; 5x 

Buffer(LT) 2.5µl, 10mM dATP 0.25µl, Stratec Taq Polymerase 1.25µl; 30 min; 68°C). The 

incubation conditions of the subsequent ligation were altered to increase life time and 

performance of the T4 ligase (dA-tailed reaction mix 13 µl; 5x Buffer(LT) 0.75µl; each adaptor 
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(LT,1:20 diluted) 0.5 µl;  10mM dNTP 0.3µl; Quick T4 Ligase (NebNext, NEB) 0.8µl; water 0.1µl; 

12 h; 12°C; followed by nick translation (20 min; 72°C)). The subsequent purification and 

amplification (5 cycles) of the generated fragment library was performed according to LT 

standard protocols.  

Sequencing. The binding of the fragment library to beads was performed according to 

manufacturer’s protocols (EZBead System(LT); E120 scale, P2 post enrichment 17%).  

Sequencing was performed on a SOLiD 5500XL system (LT) with 75 bp read length and 

implemented Exact call chemistry (LT). The accuracy of sequencing of the instrument was 

determined independently to be 99.943 %, i.e. a mean of 57 single nucleotide errors are 

estimated per 100,000 bp of raw sequence. 

In silico analyses 

Processing of sequences reads. In total we obtained 2.2 billion color space, quality-trimmed 

and filtered single-end sequences with an average length of 60 bp. More than 77 million reads 

(3.5% of the total amounts of reads) were non-human (average of 1.25 million reads (74.6 Mbp) 

per sample). Raw sequencing data were first processed to remove SOLiD barcode sequences 

and thereafter trimmed to filter out low quality reads. Sequences with at least 40 bases with a 

quality score above 20 and a minimum length of 45 bp were selected for the analysis. The 

trimmed reads were aligned against the human reference genome (NCBI build 37/hg19), first 

using the ultrafast Bowtie2 [2]  and thereafter the unaligned reads were processed using the 

NovoalignCS ( http://www.novocraft.com/) short read aligner.  

Non-human reads were then checked for low complexity reads. Low-complexity sequences 

contain repetitions of nucleotides with low or limited information content, e.g. two- or three-letter 

repeats. These sequences are prone to cause false positive cross-alignments to human and 

microbes, so they need to be removed. The grade of complexity was estimated by PRINSEQ 

(http://prinseq.sourceforge.net/) with the DUST [3] method which calculates the frequency 

distribution of trinucleotides whereby high scores are attributed to mono-, di- or trinucleotide 

repeats. A stringent threshold of 5 was necessary to eliminate the low complexity reads. 

Non-human sequences were corrected with the software SOLiD Accuracy Enhancer Tool 

(SAET), which increased the number of mapped reads by 40 - 50% in genomes 1 Kbp-200 Mbp 

in size (http://solidsoftwaretools.com/gf/project/saet/ and http://bcc.bx.psu.edu/download/saet.2.2/) and 

reduced the error rate by  3 to 5-fold.  Reads were grouped by similarity. If a mismatch was 

found and it was not supported by high quality reads, the software corrected the low quality read 

having a 'consensus' sequence. 

Reference-based taxonomic classification.  A local database of complete microbial reference 

genomes was created (1,800 bacteria, 610 fungi, 5,804 viruses and 5 archaea) downloaded 

from the National Centre for Biological Information (NCBI, http://www.ncbi.nlm.nih.gov). Draft or 

http://solidsoftwaretools.com/gf/project/saet/
http://bcc.bx.psu.edu/download/saet.2.2/
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incomplete genomes were not considered because they frequently contain contaminations and 

implausible sequences.    

Non-human corrected reads were aligned to the database using NovoalignCS. The option -r 'All'  

was used for the identification of bacteria at species level, whereas the more stringent option -r 

'None' that searches for unique matches was used for the analysis of viruses, fungi and bacteria 

at the strain level. Reads aligned to multiple bacterial genomes were interrogated with an in-

house Perl script whether they could be reassigned to the species level.   

Removal of mobile genetic elements.  First, a single-sample t-test method was applied to 

calculate the mean distances among the reads aligned to a specific reference genome. A cutoff 

p-value of p < 0.01 removed most sequences clustered to a specific region. However, in cases 

of numerous genomic islands in a bacterial genome, the distribution of distances of genome 

map positions between pairs of sequence reads was interrogated whether it followed a 

Gaussian distribution centered around  ‘0.25 x genome size’ [4].   

Normalization. The remaining microbial reads were then normalized by GC content and 

genome length. The SOLiD technology has a pronounced GC bias in GC-rich regions [5] which 

affects the quantification of microbial genome abundances. Based on sequencing of a set of 

bacterial strains of 30% to 71% GC-content on the SOLiD instrument, an empirical algorithm 

was developed that normalizes each read by its normalized coverage coefficient (dependent 

variable), based on the GC content of the read and the GC content of the genome to which it 

has aligned (independent variables) (Chouvarine et al., unpublished). The GC-corrected reads 

were then normalized by genome length and reported as counts per Mb of reference. Finally, 

bacterial abundance was normalized to bacterial DNA per human cell present in the 

metagenomic sample.  

Unaligned sequences (from 0.5% to 28.9 % of total amount of sequences per sample) were 

queried by blastn against the NCBI nt database (downloaded in January 2014) to improve the 

recovery rate of rare species or incomplete genomes not present in our database. Default 

values were selected to take the best hit for each sequence match.  

Principal component analysis. We performed principal component analysis of bacterial 

abundances on the genus level of the samples divided into pancreatic sufficient (PS) and 

pancreatic insufficient (PI) groups. This analysis was performed using two different methods. In 

the first method the relative bacterial abundances were created by applying the decostand 

(data,"total") method from the vegan package for R on the abundance count data followed by 

application of the prcomp function in R for standard PCA. In the second method we used 

absolute bacterial abundances per human cell to perform the same analysis. In both cases the 

bacterial data were normalized for GC bias and genome length of the bacterial reference 

genomes. 
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P. aeruginosa and S. aureus clone analysis.  P. aeruginosa and S. aureus sequences were 

aligned with NovoalignCS against the P. aeruginosa PAO1 [6] and S. aureus Newman [7] 

reference genomes. Single nucleotide polymorphisms (SNPs) were extracted using Samtools 

[8]. To determine the number of clones and their relative abundance, the ratio of mismatches to 

matches was counted for each SNP at genome positions covered by more than 10 reads 

whereby the match represents the nucleotide of the most frequent clone. Each clone with ni 

SNPs and a relative abundance p (0 <  p ≤ 1) in the clonal population will show a 

hypergeometric distribution of hits at j genome positions. Considering the accuracy of SOLiD 

technology of 99.94%, only clones with a relative abundance of at least 0.1% will show reliable 

signals in a data set of at least 10,000 species-specific reads. For P. aeruginosa clone type 

identification, 12 SNPs in seven loci of the core genome were queried that had previously been 

selected for a multi-marker genotyping device [9]. S. aureus clone types were identified by 

sequence type. Sequence types were downloaded from http://saureus.mlst.net/ and the 

experimental reads were aligned with NovoalignCS against them. The analysis of P. aeruginosa 

and S. aureus clones was performed on 25 samples from 10 subjects and 16 samples from 13 

individuals, respectively. 

Antimicrobial resistance genes identification.  Bacterial sequences were aligned to ‘The 

Comprehensive Antibiotic Resistance Database’ (CARD) [10] to define genetic carriage of 

resistance profiles in the cystic fibrosis lungs.  

Uniquely aligned reads carrying a maximum number of 3 SNPs were selected for analysis. P. 

aeruginosa and S. aureus sequences aligned against CARD were extracted and aligned 

(following the same procedure described previously) against the P.aeruginosa PAO1 and S. 

aureus Newman reference genomes, respectively. Samtools and SnpEff [11] were used to 

extract and categorize the effects of the genetic variants on the coding DNA sequences. We 

detected 132 SNPs present in the aligned P. aeruginosa reads, 20 (12.5%) of which were non-

synonymous SNPs. Five SNPs were qualified as rare or de novo mutations present in less than 

20% of the aligned sequences. The S. aureus genes contained 221 SNPs and 2 indels of which 

30 were non-synonymous SNPs (13 of them rare or de novo mutations).  

Statistical and phylogenetic analysis. R software was used to perform all statistical analysis. 

The program MetaPhlAn2 [12, 13] was used for taxonomic classification of normalized 

sequence data and for the construction of heatmaps of the most abundant species. Trees of life 

were constructed with the tool GraPhlAn [14] (Graphical Phylogenetic Analysis).  
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Figure Legends 

Figure S1. Rank number differences between the frequency of detection and the relative 

abundance of taxa in the whole data set of metagenomes of CF sputa. All detected taxa 

were sorted by rank numbers for the total number of reads assigned to the respective taxon and 

its detection rate in the samples. The figure displays the difference of rank numbers between 

abundance and frequency of detection for the top 95% of species belonging to the 

actinobacteria, bacteroidetes,  firmicutes, fusobacteria or proteobacteria, respectively. Rank 

number differences are shown for samples collected from PI (green triangle), PS (blue square) 

and all patients with CF (orange circle). 

Figure S2. Heatmaps of the relatedness of sputum metagenomes of PI (a) and PS (b) 

patients based on the abundance of the most frequent bacterial species. 

Figure S3. Association of the detection rate of microbial species with the total number of 

assigned microbial reads in the metagenome sample. The species composition of the 

individual metagenomes is shown whereby the color of a dot visualizes the detection rate of the 

respective species in all specimens.  

 

Table Captions 

Table S1. Reads of DNA viruses, bacteria, molds and fungi detected at the species level in the 

individual sputum metagenomes collected from patients with cystic fibrosis. 

Table S2. A. Number of species (DNA viruses, bacteria, fungi) detected in sputa collected from 

pancreatic exocrine sufficient (PS) or insufficient (PI) children (group A, 8-13 years), 

adolescents and young adults (group B, 18-23 years) and adults (group C, > 28 years) with 

cystic fibrosis. B. Relative abundance in per cent of DNA viruses, bacteria and fungi in the 

individual CF sputa. C. Proportion of anaerobes among the bacteria in the sputum 

metagenomes. D. Number of sequence reads of bacteriophages and their respective bacterial 

hosts. 

Table S3. Normalized abundance and detection rates of microbial species in the sputum 

metagenomes differentiated by bacteria, DNA viruses and eukaryotic microbes (molds and 

fungi). 

Table S4. Clonal diversity of S. aureus and P. aeruginosa populations in CF sputum. Number of 

reads that at SNP positions were divergent (‘mismatch’) from the nucleotide of the most 

prevalent clone (‘match’) sorted in 1%-intervals of the mismatch/match ratio of SNP-encoding 

reads. Only SNPs were considered that were covered by more than ten sequence reads. 
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Chapter 8 

Conclusion and Future Perspectives 

 

 

In this chapter, I reiterate the research objectives of this thesis and describe the major findings, 

including their implications, limitations and future perspectives. I also give a short comment on 

my personal view on the future of metagenomic studies and bioinformatics as well as potential 

roadblocks that may need to be addressed to continue improving bioinformatics and microbial 

genetics research. Finally, I point out the contributions of this work to the cystic fibrosis 

community and recommendations for whole metagenome sequencing project based on our 

findings.  

 

8.1 Thesis Research Objective: Major Findings, Implications, 

Limitations and Future Perspectives 

 
Next-generation sequencing technologies (NGS) have had an incredible impact in the field of 

genomic research increasing our knowledge of microbial population and their implications in 

human health. To bypass the limitations of culturable bacteria techniques93, 16S rDNA and 

whole-genome shotgun sequencing94-96 have become popular culture-independent methods 

used to analyze microbial samples and explore the population structures, genetic diversity and 

interactions of microbial communities directly from their habitats. 

For the first time, we can get reliable descriptions of the microbes which live in the human body 

(human microbiome) and their impact on different diseases like type 2 diabetes and obesity97-98. 

Furthermore, we can start to understand how microbes adapt to their environments and evolve 

creating serious problems to human health such as antibiotic resistance. These are just a few 

examples where metagenomic studies open up fundamental applications in medical research, 

where personalized healthcare is the most promising area.  

However, metagenomic analyses present several challenges in order to perform a meaningful 

and useful study. Taxonomic classification, gene prediction, assembly or biodiversity estimation 

are some examples of these difficulties. Also, the grade of complexity present in the community 
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and the large number of sequence data can complicate the bioinformatic analysis. An 

understanding of the biases and errors in the sequencing data and a continued improvement of 

bioinformatics tools is essential in order to achieve an accurate research project. 

 

This thesis presents projects which concern the cystic fibrosis lower airways microbiome, where 

the main focus is on the whole metagenome sequencing analysis. Knowing that pathogenic and 

non-pathogenic bacteria can belong to the same species, a novel algorithm was developed to 

calculate bacterial relatedness based on the detection of bacterial haplotypes. Furthermore, a 

new model of SOLiD sequencing normalization and the application of the bacterial 

recombination approach on the two main cystic fibrosis pathogens (P. aeruginosa and 

S.aureus) are presented.   

 

8.1.1. The cystic fibrosis lower airways microbial metagenome 

 

The work was centered on the analysis of cystic fibrosis metagenome sputum samples of the 

lower airways using whole-genome shotgun sequencing. The identification of frequencies and 

abundances of viruses, bacteria and fungi in cystic fibrosis individuals becomes crucial to 

understand the evolution of the sickness. Previous analyses based on the 16S rDNA 

sequencing already have provided an overview of the taxa present in the lower airways of 

individuals with cystic fibrosis99-101. However, as have been mentioned in Chapter 2, this 

approach has some limitations.  

 

In order to gain a solid and better understanding of the cystic fibrosis microbial communities I 

conducted to date the largest and deepest cystic fibrosis metagenome analysis covering all 

different age groups and states of the disease, to comprehensively characterize the 

microorganisms present in the community. For the first time, an exhaustive analysis of 

respiratory secretions of exocrine pancreas sufficient (PS) and exocrine pancreas insufficient 

(PI) subjects with cystic fibrosis of different age groups (children, adolescents and adults) has 

been performed. My study confirmed the presence of a large and diverse repertoire of microbial 

taxa in the CF lower airway where bacteria typically made up more than 99% of the microbial 

community, while viruses and fungi were present in less than 1%. An individual signature of 

multiple species present in low abundance and few disease-associated pathogens (such as P. 

aeruginosa and S. aureus) in high abundance constitute the polymicrobial community. 

Furthermore, I was able to estimate the proportion of anaerobes in the microbial metagenome 

which decreases with age in our cohort of CF patients. The decline of the anaerobes is replaced 

by the leading pathogen P. aeruginosa as the severity of the disease increases with aging.  

Armed with this knowledge, a detailed overview of the relative abundance of all detected 

species is now presented. The dominant taxa in the metagenome of the whole cohort were the 

bacterial species that belong to the groups streptococci, staphylococci, pseudomonads as well 
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as Haemophilus sp., Burkholderia sp. and Stenotrophomonas sp.. The leading pathogen P. 

aeruginosa was identified in all metagenomic data sets from PI patients although six of them 

had been classified as P. aeruginosa negative by culture-dependent analysis. This clinically 

important finding suggests the ubiquitous presence of P. aeruginosa in respiratory secretions of 

PI CF patients although its relative abundance was just 0.02% in P. aeruginosa – negative 

patients. The viral community consisted primarily of phages, a few human pathogens, primarily 

herpes virus and adenovirus, and rare cases of viruses infecting non-mammalian eukaryotic 

hosts. Lastly, the mycobiome community was dominated by Aspergillus species and 

Saccharomycetes including Candida sp..   

 

In addition, the clonal composition of the populations of the leading pathogens S.aureus and 

P.aeruginosa was identified from the frequency distribution of SNPs in the metagenomes of our 

CF cohort. The S. aureus and P. aeruginosa populations were found to be composed of one 

major and numerous minor clone types. The rare clones constitute a low copy genetic resource 

which could rapidly expand as a response to habitat alterations such as antimicrobial 

chemotherapy or invasion of novel microbes. Conversely, the low coverage of sequences 

repeatedly prevented the identification of the genotype of the dominant strain within the frame of 

established typing schemes. Nevertheless, four of ten analyzed P. aeruginosa strains were 

assigned to ubiquitous clones of the global P. aeruginosa population and two pairs out of 13 S. 

aureus strains were identified to belong to the common sequence type ST7 and the pandemic 

MRSA lineage ST22, respectively.  

 

Finally, I performed the analysis of antibiotic resistance genes detection in S. aureus and P. 

aeruginosa. Uncommon non-synonymous nucleotide substitutions were present in mexS, mexF, 

mexI and aph P. aeruginosa genes which encode drug-inactivating enzymes or multidrug efflux 

pumps. In S. aureus mutations were detected in gyrA, gyrB, rpoB, rpoC, tufA, parE and parC. 

 

These results provide significant and novel knowledge for the cystic fibrosis research 

community.  

 

8.1.2. Detection of recombination in bacterial genomes by haplotype construction. 

 

The second objective of my PhD was the study of bacterial recombination in the two dominant 

pathogens of cystic fibrosis, P. aeruginosa and S. aureus. Recombination is a key process in 

bacterial evolution, therefore it is crucial that we have bioinformatic tools at hand that are able to 

precisely detect its occurrence and interpret its effects within phylogenetic relationships.  

 

In analogy to the diploid genomes, in this approach the term haplotype is defined as the number 

of syntenic SNPs in paired comparisons of bacterial genomes. I developed a novel algorithm to 
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analyze homologous recombination in the bacterial core genome of bacteria based on 

haplotype reconstruction. To identify the haplotype blocks, each strain was aligned against the 

reference genome, and a first matrix was created which contained all SNPs detected for each of 

these strains. These SNPs were then ordered by genome position. Thereafter, pairwise 

comparisons were performed to construct a second matrix. This second matrix contained the 

number of consecutive shared SNPs at each SNP position for each pair. This approach had to 

rely on the estimation of the minimum length of SNPs shared between genomes, since the start 

and stop positions of a haplotype are not able to be detected. With this fast and simple 

approach the identical fragments present between two strains, are detected. The structure and 

homology present in the bacterial community are calculated from the frequency and size 

distribution of haplotypes. Therefore, related strains will share longer haplotypes than unrelated 

strains.  

 

To avoid making assumptions on the complexity and structure of the population, I applied my 

algorithm to three different projects with real data sets:  

 

a) Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from 

disease and environment. 

 
In this study, the 15 most frequent clonal complexes in the P. aeruginosa population and the 5 

most common clones from the environment were analyzed. 

Performing the reconstruction of haplotypes, 192,443 quality-controlled SNPs shared at least in 

two strains, were identified in the 210 paired comparisons whereby PAO1 was the reference 

genome. These SNPs were exploited to construct a total of 3,779,224 SNP syntenies 

(‘haplotypes’) with lengths between 2 and 2,348 consecutive-shared SNPs. The median 

physical length of paired conserved sequence was calculated to be 207 base pairs suggesting 

an unrestricted gene flow between clonal complexes by recombination. The two most related 

strains (1BAE and 3C2A) shared 70% of the longest haplotypes (≥ 20kbp) implying that they 

have emerged from a common ancestor. 

 

b) Intraclonal genome diversity of the major Pseudomonas aeruginosa clones C and 

PA14. 

 
A second project where I applied the reconstruction of haplotypes with the novel algorithm was 

to study the conservation and relatedness of the two major clones of P. aeruginosa clones C 

and PA14. For the 58 clone C and 42 PA14 isolates, 1653 and 861 pairwise combinations were 

conducted, respectively. The analysis showed that haplotypes are 1000-fold longer within a 

clone than among unrelated clones, indicating that the chromosomal frame is conserved among 

members of a clonal complex. 
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c) Reconstruction of haplotypes in S. aureus. 

 
Forty-one genome sequences of S. aureus were taken for the haplotype reconstruction 

approach. In this case, the strain "Newman" was the reference. 136,258 SNPs were detected to 

build up a total number of 8,704,567 haplotypes. The largest haplotype consisted of 2,450,522 

nucleotides. A detailed analysis of the S. aureus ST5 revealed a median length of paired 

conserved sequences of 33 syntenic SNPs, which represent a median physical length of 4.2 

kbp. 

 

I conclude from the application of this novel algorithm that paired whole genome comparisons of 

haplotype length allow an unbiased analysis of the population structure of being more clonal or 

more sexual. Haplotype length calculated as the physical length (nucleotide length) rather than 

the number of syntenic SNPs (consecutive shared SNPs) provides a better evaluation of 

relatedness of strains.  

 

 

8.1.3. Filtration and normalization of sequencing read data in whole-metagenome 

shotgun samples 

Another focus of my thesis was to implement an automatic pipeline for the metagenome 

analysis of SOLiD technology sequences due to the small number of tools available for this 

technology. The estimation of bacterial abundances by whole-metagenome shotgun (WMS) 

sequencing is proportional to the counts of reads mapped to a reference. Based on the biased 

results obtained from the SOLiD sequencing of different bacterial species with large variation in 

their GC genome content, a key step in the achievement of an accurate analysis was the 

implementation of the normalization based on the GC content of the species. A second 

challenge on the WMS analysis was to identify sequences which belong to genomic islands and 

can distort the results. Finally, a normalization based on the length of the reference genome 

must be considered.  

A new model which covers all these obstacles by filtration and normalization procedures was 

developed, thus leading to more accurate estimation of bacterial abundances in a metagenome. 
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8.2 The Future of Metagenomics and Bioinformatics 

 
The fast advances in sequencing technologies are moving towards the transformation of 

research areas like metagenomics, human genomics and medical diagnostics.  Metagenomics, 

the cornerstone of this thesis, has bypassed the need of isolation or cultivation of 

microorganisms present in culture-dependent methods. However, considerable bottlenecks and 

bioinformatic challenges need to be addressed.  

 

Metagenomics and medical diagnosis.  

As one of the most promising applications in clinical microbiology, metagenomics has the 

potential to revolutionize how pathogens are detected and optimize treatments strategies102-103. 

Profiling studies of the gut microbiome have already shown that the microbiota rather than a 

single pathogen play an important role in regulating inflammatory and metabolic conditions in 

determined diseases, such as colon cancer104-105 and inflammatory bowel disease106-107. 

Therefore, metagenomics offers a better understanding of the entire microbial community and 

the mechanisms involved in the relationship with the host. In addition, the identification of 

individual organisms which could confer virulence and antibiotic resistance properties is also 

possible following this approach.  

Third generation sequencing technologies as well as the development of new bioinformatic tools 

bear the potential to reduce the turnover time of infectious disease diagnostics in the real life 

medical setting.  

 

Bioinformatic and sequencing challenges 

At present, one of the challenges that metagenomics is facing are the computational limitations. 

These limitations do not just arise from data processing and dearth of appropriate programs and 

tools. Processing and analysis of big data generated by the new sequencing technologies will 

be cost-intensive which probably most of the laboratories will not be able to afford108. However, 

cloud computing is a possible solution to overcome these problems. 

Other challenges come directly from the accuracy of data and its interpretation as well as from 

the transformation of the discoveries into medical practice. 

Errors generated during sequencing or deposited in databases109 impede the discovery of novel 

variants. Detection of SNPs, insertion-deletion variants (indels), structural variants (SVs) and 

copy number variants (CNVs) is still error-prone. Assemblies of short metagenomic sequences 

as well as de novo assemblies remain a further big obstacle in the analysis of genomic data. 

Lastly, the methods to understand the functional relationship between associated variants and 

phenotypic traits must be improved. Therefore, improvements and developments of algorithms 

and quality control measures are crucial and must be taken into consideration to address all 

different challenges we are confronting.  
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8.3 Conclusion 

 
In conclusion, this thesis describes a large and comprehensive metagenome study of the lower 

airways cystic fibrosis microbiome. It addresses important topics like the identification of viruses 

or bacterial clones in the metagenome, and the relatedness between microbial species and 

disease development. As well, an estimation of the recombination rates of the major cystic 

fibrosis pathogens based on the reconstruction of haplotypes is performed using a novel 

algorithm for an unbiased analysis. I can confirm that all objectives have been satisfactorily 

achieved, and even a new model of metagenomic analysis has been developed which was not 

one of the primary objectives of the dissertation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Future large-scale studies will hopefully integrate metagenomics with metatranscriptomics, 

metaproteomics and metabolomics to get an in-depth understanding of the functional dynamics 

of microbial communities in cystic fibrosis.   
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Chapter 10 

Appendix 

 

Appendix1 - Metagenomic analysis pipeline 

Here the metagenomic pipeline is described a bit more in detail: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Quality Filtering:  sequences are trimmed and filtered out based on the quality 

parameters. The command line used is:  

 

python solid-trimmer.py -c input -q output -p outfile.trimmed --max-ns 3 --moving-average 7:18 -

-min-read-length 45 
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2. Alignment against human reference genome: quality filtered sequences are aligned 

against the human reference genome, first with the fast aligner Bowtie2: 

 
bowtie2 --fast -x  human.reference -U  input.trimmed.fastq -S output.sam 

 

and secondly, the remaining sequences are aligned again against the human reference 

genome. This second alignment is performed with the specific aligner for short reads 

called Novoalign:  

 

novoalignCS -d human.reference.cix -f input.csfasta –F CSFASTAnQV  -r Random  -H -c 24 -o SAM 
 

 

3. Filtering of low complexity reads: the extraction of low complexity reads is achieved to 

all non-human sequences with the tool prinseq-lite as following: 

 

./prinseq-lite-0.20.4/prinseq-lite.pl -fastq input -lc_method dust -lc_threshold 5 -out_good null -
out_bad outfile.bad 
 
 

4. Bacteria alignments: to perform the taxonomic bacterial classification two different 

steps of alignments are executed with the software Novoalign.  

1st Step: the option –r None is selected in order to identify unique sequences, i.e. 

sequences that match uniquely against a specific region. The command used is: 

 

novoalignCS -d bacteria.genomes.cix –f input.filtered.csfasta -F CSFASTAnQV -r None  -H 

-c 24 -o SAM  

 

2nd Step: the option –r All is used to identify all possible hits against bacterial 

genomes. 

novoalignCS -d bacteria.genomes.cix –f input.filtered.csfasta -F CSFASTAnQV -r All  -H -c 

24 -o SAM  

 

5. Virus and Fungi alignments: all remaining sequences are aligned against DNA viruses 

and Fungi reference genomes with the aligner Novoalign. 

 

novoalignCS -d virus_fungi_reference.cix –f  input.no_bacteria.csfasta -F CSFASTAnQV -r None -

H -c 24 -o SAM 
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6. Normalization: normalization is performed based on the model explained in Chapter 6. 

All sequences aligned against bacteria, DNA viruses, fungi and molds are normalized by 

GC content and genome length before relative abundances are reported. 

As well, a step of normalization by human cell is performed as is described in Chapter 6. 

 

7. MetaPhlAn2: this program is used to calculate the heatmaps. The following commands 

were used: 

 

merge_metaphlan_tables.py *.txt > merged_abundance_table.txt 
 

metaphlan_hclust_heatmap.py -c bbcry --top 10 --minv 0.01 -s log –in 
merged_abundance_table.txt --out  abundance_heatmap_top10.png 

 

 

For supplementary R scripts developed during this thesis, please refer to the DVD 

attached to the thesis. 

 

 

Appendix 2 - Haplotypes reconstruction pipeline 

A new algorithm was developed to perform the analysis of recombination based on haplotypes 

reconstruction. The script and an example file are provided with the DVD attached to the thesis.  

The script is written in perl and performs pair-comparisons of SNPs detected in each strain of 

the analysis. The input provides the information of SNPs positions for each strain, an example 

of the input file format is: 

 
Strain  SNP_position nt nt_variant 
0812 21656 T A 
0812 34371 T C 
0812 34689 A G 
0812 39372 G A 
1BAE 34371 T C 
1BAE 49639 T C 
1BAE 57196 A G 
1BAE 57217 G A 
239A 34371 T C 
239A 64139 T C 
239A 74468 C G 
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Different output files will be generated: 

 all_files_SNPs.txt: contains all different SNPs for each strain. 

 combinations.txt: provides the information of all different strain comparisons. 

 haplotypes_distances_hp.txt: this file has the information regarding all haplotypes found 

in all strain comparisons. Each row contains the information of a haplotype. Each column 

contains: 

 1st column: number of haplotypes. 

 2nd column: number of consecutive SNPs that two strains share in that 

haplotype. 

 3rd column: all SNPs were sorted by increasing genome position. Rank 

numbers were assigned where 0 represents the first SNP position found. 

The start SNP rank number of the haplotype is found in this column. 

 4th column: End SNP rank number of the haplotype. 

 5th column: represents the start position of the haplotype in the reference 

genome. 

 6th column: end position of the haplotype in the reference genome. 

 7th column: genome physical length of the haplotype. 

 8th column: strains to which the haplotype belongs. 

 

 
 

 TOTAL_MATRIX.txt: The first line of the file represents the SNPs positions in the reference 

genome. The second line shows the rank number of the SNPs detected. Following lines 

contain the information of all consecutive SNPs at each position for each strain comparison. 

Example of the file: 

 

Genome position -> 35 60 432 765 854 996 

SNP position -> 0 1 2 3 4 5 

Comparison1 -> 3 2 1 0 2 1 

Comparison2 -> 5 4 3 2 1 0 
 

Number_
haplotype 

Consecutive
_SNPs 

SNP_ 
start 

SNP_
end 

Hb_genome
_st 

Hb_genome_
end 

Genome
_length Comparison 

1 4 0 3 16654 34689 18036 E429_EC21 

2 4 6 9 29639 61809 12171 E429_EC21 

3 5 15 19 94590 115976 21387 E429_EC21 

4 2 21 22 132188 133223 1036 E429_EC21 

5 2 25 26 143876 155532 11657 E429_EC21 

6 3 28 30 159798 164956 5159 E429_EC21 

7 19 35 53 190098 285599 95502 E429_EC21 
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Abbreviations 
 
16S rRNA  16S ribosomal RNA 

bp   nucleotide base pair 

Bcc   Burkholderia cepacia complex  

CF   cystic fibrosis 

ddNTP  dideoxynucleotides 

DNA   deoxyribonucleic acid 

emPCR  emulsion PCR 

GC   G+C content, the percentage of summed guanine and cytosine 

  nucleotides in a sequence 

MRSA  Methicillin-resistant Staphylococcus aureus 

NGS   next generation sequencing 

NTHi  Unencapsulated Haemophilus influenzae strains 

PI   pancreatic insufficient 

PS   pancreatic sufficient 

 

PCR   polymerase chain reaction 

Q  quality sequencing value 

rRNA  ribosomal RNA 

SNP   single nucleotide acid 

WGS    whole-genome shotgun sequencing 
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